摘要
设(Xi,Yi)(i=1,2,…,n)是来自总体(X,Y)的样本(独立同分布),其中X∈R1,Y∈Rq.M(x y)是Y=y时X的条件分布,Mnkn(x y)为M(x y)的第kn个最近邻域的经验分布估计量,讨论条件经验过程Sn(t,x,y)=kn12(Mnkn(x y)-M(x y))的渐近性质,得出在适当条件下,对固定的y,Sn(t,x,y)(x,t为参数)弱收敛于某一G aussian过程S(.).
Let (Xi,Yi)(i = 1,2,…,n) be samples from the population (X,Y)(X ∈R^1,Y ∈ R^q). Given Y = y,X has the conditional distribution M(xly).Mnkn(x|y) is the kn nearest neighbor estimator of M(x|y). The asymptotic properties of the conditional empirical process is 1 investigated: Sn(t,x,y) = k1/2 (Mnkn(x|y) - M(x|y)). Then under some regular conditions we show that for fixed y,S,, (t ,x,y) converges weakly to a Gaussian process S (·).
出处
《数学的实践与认识》
CSCD
北大核心
2008年第17期138-142,共5页
Mathematics in Practice and Theory
基金
湖南省科技厅软科学基金(2006ZK3126)
关键词
条件分布
经验过程
渐近性质
conditional distribution
empirical process
asymptotic property