期刊文献+

基于非等距网格高阶紧致差分格式的多重网格算法研究 被引量:1

The Multigrid Algorithm Based on a High-Order Compact Difference Scheme with Unequal Mesh-Size Discretization
下载PDF
导出
摘要 本文结合非等距网格高精度紧致差分格式的优越性与多重网格方法的快速收敛性,求解二维对流扩散方程。研究结果表明,对于处理物理量在不同的空间方向呈现不同的性态特征或不同变化规律的物理问题时,用非等距网格离散的四阶紧致格式的多重网格算法和二阶中心差分格式的多重网格算法都比等距网格离散得高效。同时,在非等距网格下,部分半粗化多重网格算法比完全粗化多重网格算法具有更高的计算效率。针对不同的松弛算子对误差残量的磨光效果比较研究表明,线松弛算子是最高效的。而且,非等距网格离散的高精度紧致格式的多重网格算法对于对流扩散问题中大网格雷诺数情形也是收敛的。 The two-dimensional (2D) convection-diffusion equation is solved by combining the superiority of the unequal mesh-size high-order compact difference scheme with the fast convergence of the multigrid method. It is shown that for solving the physical problems in which physical quantities show different characteristic states in different directions or different changing features, the proposed multigrid algorithm based on the fourth-order compact scheme and the standard central difference scheme with unequal mesh size is more efficient than that with an equal mesh size. In addition, the partial semicoarsening strategy is more efficient than full-coarsening with unequal mesh size discreitization. Among the multigrid algorithms of the fourth-order compact schemes, the most effective smoother is the line smoother. The muhigrid algorithm of the fourth-order compact scheme under unequal mesh size discretization is convergent for the large cell Reynold number in the 2D convection-diffusion problem.
出处 《计算机工程与科学》 CSCD 2008年第9期77-81,85,共6页 Computer Engineering & Science
基金 国家自然科学基金资助项目(10502026 10662006)
关键词 非等距网格离散 紧致差分格式 高精度 多重网格方法 部分半粗化 unequal mesh-size diseretization compact difference scheme higher accuracy multigrid method partial semicoarsening
  • 相关文献

参考文献2

二级参考文献8

  • 1陈国谦,1991年
  • 2陈国谦,力学学报,1991年,23卷,418页
  • 3陈国谦,1991年
  • 4是勋刚,现代流体力学进展,1991年
  • 5田振夫,现代力学与科技进步.庆祝中国力学学会成立40周年大会论文集,1997年
  • 6田振夫,贵州大学学报,1997年,1期,13页
  • 7田振夫,西北大学学报,1996年,26卷,2期,109页
  • 8陈国谦,杨志峰,高智.对流扩散方程的四阶指数型差分格式[J].计算物理,1991,8(4):359-372. 被引量:14

共引文献28

同被引文献7

  • 1葛永斌,田振夫,吴文权.三维对流扩散方程非等距网格上的四阶紧致格式及其多重网格方法[J].工程热物理学报,2006,27(5):838-840. 被引量:7
  • 2Gupta M M,Kouatchou J,Zhang J.Comparison of second and fourthorder discretization for multigrid Poisson solvers[J].Journal of Computational Physics,1997,132:226-232.
  • 3Zhang J.Accelerated multigrid high accuracy solution of the convection diffusion equation with high Reynolds number[J].Numefical Methods for Partial Differential Equation,1997,13:77-92.
  • 4Zhang J.Fast and high accuracy muhigrid solution of the three dimensional Poisson equation[J].Journal of Computational Physics,1998,143:449-461.
  • 5Gupta M M,Zhang J.High accuracy multigrid solution of the 3D convection-diffusion equation[J].Applied Mathematics and Computation,2000,113:249-274.
  • 6Zhang J.Multigrid method and fourth-order compact scheme for 2D Poisson equation with unequal mesh-size discretization[J].Joumal of Computational Physics,2002,179:170-179.
  • 7Zhang J,Ge L L,Kouatchou J.A two colorable fourth-order compact difference scheme and parallel iterative solution of the 3D convection diffusion equation[J].Mathematics and Computers Simulation,2000,54:65-80.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部