期刊文献+

差分进化算法的交叉概率因子递增策略研究 被引量:17

Study on strategy of increasing cross rate in differential evolution algorithm
下载PDF
导出
摘要 为了有效地控制差分进化算法的全局搜索和局部搜索,基于递增交叉概率因子的基本思想,在已有的自适应二次变异差分进化算法的基础上,提出了开口向下抛物线、开口向上抛物线和指数曲线3种非线性的交叉概率因子递增策略,并用4种经典函数对它进行测试。测试结果表明,对于多数连续优化问题,在初始参数相同的情况下,凹函数递增策略优于线性策略,而线性优于凸函数策略。凹函数递增策略能够在不影响收敛精度的情况下较大幅度地提高差分进化算法的收敛速度。 To efficiently control the global and local search of Differential Evolution algorithm(DE),motivated by the idea of in creasing Cross Rate(CR),three nonlinear strategies for CR,a parabola opening upwards,a parabola opening downwards and an exponential curve,based on the existing differential evolntion algorithm with adaptive second mutation are proposed.Four classic Benchmarks functions are used to evaluate the strategies on the DE performance.The experimental results show that for most continuous optimization problems,the strategy of concave function gains an advantage over the linear strategy,while the linear strategy outperforms strategy of convex function with the identical initial and final weights.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第27期33-36,共4页 Computer Engineering and Applications
基金 广西自然科学基金(No.05775032 No.06400161) 广西民族大学研究生教育创新计划No.GXUN-CHX0752~~
关键词 差分进化 早熟收敛 交叉概率 Differential Evolution algorithm(DE ) premature convergence Cross Rate ( CR )
  • 相关文献

参考文献6

二级参考文献33

  • 1陆克中,王汝传,帅小应.保持粒子活性的改进粒子群优化算法[J].计算机工程与应用,2007,43(11):35-38. 被引量:14
  • 2Kennedy J, Eberhart R. Particle swarm optimization[A]. International Conference on Neural Networks[C]. Perth, Australia: IEEE, 1995. 1942-1948.
  • 3Elegbede C. Structural reliability assessment based on particles swarm optimization [ J ]. Structural Safety,2005, 27 (10):171-186.
  • 4Robinson J, Rahmat-Samii Y. Particle swarm optimization in electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2004, 52 (2). 397-406.
  • 5Salman A, Ahmad I, A1-Madani S. Particle swarm optimization for task assignment problem[J]. Microprocessors and Microsystems, 2002, 26 (8): 363-371.
  • 6Shi Y, Eberhart R. Empirical study of particle swarm optimization [A]. International Conference on Evolutionary Computation [C]. Washington, USA: IEEE,1999. 1945-1950.
  • 7Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [A]. The IEEE Congress on Evolutionary Computation [C]. San Francisco, USA.. IEEE, 2001.101-106.
  • 8Eberhart R, Shi Y. Tracking and optimizing dynamicsystems with particle swarms [A]. The IEEE Congress on Evolutionary Computation [C]. San Francisco, USA: IEEE, 2001. 94-100.
  • 9Price K. Differential Evolution,, A Fast and Simple Numerical Optimizer [A]. 1996 Biennial Conf of the North American Fuzzy Information Processing Sociey[C]. New York, 1996:524-527.
  • 10Price K. Differential Evolution vs, the Functions of the 2nd ICEO [A]. IEEE Int Conf on Evolutionary Computation [C]. Indianupolis, 1997:153-157.

共引文献425

同被引文献156

引证文献17

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部