期刊文献+

支持增量学习的文本单类别分类算法 被引量:1

Incremental learning algorithm for one-class document classification
下载PDF
导出
摘要 目前的文本单类别分类算法在进行增量学习时需要进行大量的重复计算,提出了一种新的用于文本的单类别分类算法,在不降低分类效果的同时,有效地减少了加入新样本学习时所需的计算量,从而比较适合于需要进行增量学习的情况。该方法已进行了测试实验,获得了较好的实验结果。 In this paper,an incremental learning algorithm for one-class document classification is proposed.It also has the advantage of low computational load with the same level of performanee.A prototype system is constructed to implement the algorithms, and the results of the tests are pretty good.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第27期157-158,164,共3页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)(No.2006AA01Z449)~~
关键词 简单贝叶斯 支持向量机 单类别分类 文本/网页分类 Naive Bayesian Support Vector Machine(SVM ) one-class classification text/Web classification
  • 相关文献

参考文献6

  • 1Manevitz L,Yousef M.One-class SVM for document classification[J]. Journal of Machine Learning Research,2001.
  • 2Manevitz L,Yousef M.One-class document classification via neural networks[J].Neurocomputing, 2007.
  • 3Wang Ke,Stolfo S J.One-class training for masquerade detection[C]// 3rd IEEE International Conference on Data Mining,2003.
  • 4Onoda T,Murata H,Yamada S.One class classification methods based non-relevance feedback document retrieval[C]//International Conference on Web Intelligence and Interlligent Agent Technology, 2006.
  • 5Wang D F,Yeung D S,Tsang E C C.Structured one-class classification[J].Systems,Man and Cybernetics,2006.
  • 6Reuters-21578 test collections[S/OL].(1997).http://www.daviddlewis. com/resources/testcollections/reuters21578.

同被引文献11

  • 1罗丽姗.垂直搜索引擎发展概述[J].图书馆学研究,2006(12):68-70. 被引量:22
  • 2李晓明,闫宏飞,王继民.搜索引擎原理、技术与系统[M].北京:科学出版社.2004.
  • 3Rungsawang A,Angkawattarmwit N.Learnable topic-specific web crawler[J].Journal of Network and Computer Applications,2005,28(2):97-114.
  • 4Chakrabarti S,van den Bergand M,Dom B.Focused crawling:A new approach to topic-specific Web resource discovery[J].Computer Networks,1999,31:1623-1640.
  • 5Manevitz L,Yousef M.One-class document classification via neural networks[J] ,Neurocomputing,2007,70(7/9):1466-1481.
  • 6Manevitz L,Yousef M.One-class SVMs for document classification[J].The Journal of Machine Learning Research,2002,2:139-154.
  • 7Paszani M,Billsus D.Leaming and revising user profiles:The identifieation of interesting web sites[J].Machine Learning,1997,27:313-331.
  • 8Jericho.HTML Parser[EB/OL].http://soureeforge.net/projects/jerichohtml.
  • 9Heaton J.Programming spiders,bots,aggregators in Java[EB/OL].http://linux.chinaunix.net/bbs/thread-1036501-1-1.html.
  • 10ICTCLAS[EB/OL].http://ictcles.org/.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部