期刊文献+

Sandwich Complexes of the As_4~(2-) Aromatic Ring with Some Transition Metals

Sandwich Complexes of the As_4~(2-) Aromatic Ring with Some Transition Metals
下载PDF
导出
摘要 The equilibrium geometries, energies, harmonic vibrational frequencies, and nucleus independent chemical shifts (NICS) of the new type sandwich structures [As4MAs4]^n- (M = Fe, Co, Ni, Ru, Rh, Pd, Os, Ir and Pt; n = 0, 1 or 2) are investigated at the B3LYP level. All the [As4MAs4]^n- species adopt staggered (D4d) conformations as their stable structures and eclipsed (D4h) conformations as their transition states, and once the sandwich complexes are formed, the As4^2- square properties remain unchanged. The NICS calculation confirms that the complexes of Fe, Co, and Ni are aromatic with negative NICS values, and those of Ru, Rh, and lx exhibit slight aromaticity, while those of Pd, Os, and Pt show slight antiaromaticity. The equilibrium geometries, energies, harmonic vibrational frequencies, and nucleus independent chemical shifts (NICS) of the new type sandwich structures [As4MAs4]^n- (M = Fe, Co, Ni, Ru, Rh, Pd, Os, Ir and Pt; n = 0, 1 or 2) are investigated at the B3LYP level. All the [As4MAs4]^n- species adopt staggered (D4d) conformations as their stable structures and eclipsed (D4h) conformations as their transition states, and once the sandwich complexes are formed, the As4^2- square properties remain unchanged. The NICS calculation confirms that the complexes of Fe, Co, and Ni are aromatic with negative NICS values, and those of Ru, Rh, and lx exhibit slight aromaticity, while those of Pd, Os, and Pt show slight antiaromaticity.
出处 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2008年第9期1097-1102,共6页 结构化学(英文)
关键词 As4^2- dianion AROMATICITY DFT calculation nucleus independent chemical shifts (NICS) As4^2- dianion, aromaticity, DFT calculation, nucleus independent chemical shifts (NICS)
  • 相关文献

参考文献31

  • 1Scherer, O. J. Acc. Chem. Res. 1999, 32, 751-762.
  • 2Scherer, O. J.; Bruck, T. Angew. Chem., Int. Ed. Engl. 1987, 26, 59-59.
  • 3Baudler, M.; Akpapoglou, S.; Ouzounis, D.; Wasgestian, F.; Meinigke, B.; Budzikiewicz, H.; Munster, H. Angew. Chem. Int. Ed. Engl 1988, 27,280-281.
  • 4Zhai, H. J.; Wang, L. S.; Kuznetsov, A. E.; Boldyrev, A. I. J. Phys. Chem. A 2002, 106, 5600-5606.
  • 5Urnezius, E.; Brennessel, W. W.; Cramer, C. J.; Ellis, J. E.; Schleyer, P. V. R. Science 2002, 295, 832-834.
  • 6Kealy, T. J.; Pauson, P. L. Nature 1951, 168, 1039-1040.
  • 7Lein, M.; Frunzke, J.; Frenking, G. Inorg. Chem. 2003, 42, 2504-2511.
  • 8Wang, D.; Xiao, C. L.; Xu, W. G. J. Mol. Struct. (Theochem.) 2006, 759, 225-238.
  • 9Malar, E. J. P. Eur. J. Inorg. Chem. 2004, 2723-2732.
  • 10Liu, Z. Z.; Tian, W. Q.; Feng, J. K.; Zhang, G.; Li, W. Q. J. Phys. Chem. A 2005, 109, 5645-5655.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部