摘要
This paper studies a landfill where there are three faults running through. As serious pollution has occurred to the geological environment, the landfill is to be closed up and renovated. The paper aims to explore the role of fracture structure in leachate pollution at the landfill. The research was carried out in several stages. First, mathematical models of the pre-renovation landfill with three faults running through and the landfill after renovation were established. And then, the boundary conditions and parameters of the two mathematical models were determined. The groundwater level of the landfills was simulated in order to modify the two mathematical models. As a result, a feasible mathematical model was achieved. Based on this model, a comparison was made of the COD concentration variations in the inside leachate and outside leachate between the two landfills. Accordingly, the impacts of the fracture structure on the pollution of leachate at the landfills could be identified. The study results show that while faults contribute to the migration of ieachate, they also serve as a confluence of leachate, thus further deteriorating the environment. The COD concentrations of the inside leachate and the outside leachate of the pre-renovation landfill are respectively 800 mg/L and 220 mg/L higher than those of the post-renovation landfill. Therefore, measures must be taken to handle the ieachate seepage in areas where there are faults as well as the neighboring areas so as to get the environmental pollution under control.
This paper studies a landfill where there are three faults running through. As serious pollution has occurred to the geological environment, the landfill is to be closed up and renovated. The paper aims to explore the role of fracture structure in leachate pollution at the landfill. The research was carried out in several stages. First, mathematical models of the pre-renovation landfill with three faults running through and the landfill after renovation were established. And then, the boundary conditions and parameters of the two mathematical models were determined. The groundwater level of the landfills was simulated in order to modify the two mathematical models. As a result, a feasible mathematical model was achieved. Based on this model, a comparison was made of the COD concentration variations in the inside leachate and outside leachate between the two landfills. Accordingly, the impacts of the fracture structure on the pollution of leachate at the landfills could be identified. The study results show that while faults contribute to the migration of ieachate, they also serve as a confluence of leachate, thus further deteriorating the environment. The COD concentrations of the inside leachate and the outside leachate of the pre-renovation landfill are respectively 800 mg/L and 220 mg/L higher than those of the post-renovation landfill. Therefore, measures must be taken to handle the ieachate seepage in areas where there are faults as well as the neighboring areas so as to get the environmental pollution under control.
基金
the Natural Science Foundation of Chongqing (Grant No.cstc.2004BB7059);the Foundation of Municipal Committee of Chongqing City(No.200511).