期刊文献+

钛基复合材料中的微区应力分布 被引量:1

Microstress distribution of titanium matrix composites
下载PDF
导出
摘要 使用三纤维/基体有限元模型研究了纤维失效和基体屈服后钛基复合材料内微区应力分布,结果表明:钛基复合材料内纤维失效端面的轴向应力降为0,承载能力降低,相邻基体和未失效纤维的承载能力升高;随着纤维体积分数的增大,失效后应力和失效前应力的比值增大;当中心纤维断裂时,纤维体积分数高的复合材料立即失效,且失效形式为共面失效;对于纤维体积分数低的复合材料,基体屈服对纤维与基体之间的载荷传递有重要的影响. The three fiber/matrix finite element model was developed to study the microstress distribution of titanium matrix composites under the condition of the fiber failure and the matrix yield. The results showed that the axial stress at the position of fiber failure drops to zero, the load-carrying capacity of failure fiber decreases, while the load-carrying capacity of the neighboring matrix and fiber increases. The ratio of stress after and before fiber failure increases with increasing fiber volume fraction. When the middle fiber breaks, the failure occurs immediately in composites at high fiber volume fraction, and the failure location in neighboring fiber occurs in the identical fracture plane. For composites at low fiber volume fraction, the matrix plasticity significantly influences on the load transfer between the fiber and the matrix.
出处 《材料研究学报》 EI CAS CSCD 北大核心 2008年第4期389-393,共5页 Chinese Journal of Materials Research
基金 国家自然科学基金50371069 教育部博士点基金20030699013 博士创新基金521030102-0400-W016133资助项目~~
关键词 材料科学基础学科 钛基 纤维失效 微区应力 有限元分析 foundational discipline in materials science, Ti-matrix, fiber broken, local stress, finiteelement analysis
  • 相关文献

参考文献24

  • 1D.B.Miracle, Metal matrix composites-from science to technological significance. Comp. Sci. Tech., 65, 2526(2005)
  • 2M.N.Yuan, Y.Q.Yang, Z.J.Ma, X.Luo, Analysis of interfacial behavior in titanium matrix composites by using the finite element method (SCS-6/Ti55). Scripta. Mater., 56, 533(2007)
  • 3原梅妮,杨延清,马志军,吕祥鸿,李健康,陈彦.SiC纤维增强钛基复合材料界面强度研究进展[J].稀有金属材料与工程,2007,36(6):1115-1118. 被引量:10
  • 4Y.Q.Yang, H.J.Dudek, Interface stability in SCS-6 SiC/Superα2 composites, Scripta. Mater., 374, 503(1997)
  • 5杨延清,马志军,李健康,吕祥鸿,艾云龙.SiC_f/Super α_2复合材料的界面反应及对性能的影响[J].稀有金属材料与工程,2006,35(1):43-46. 被引量:11
  • 6Z.Gao, K.L.Reifsnider, G.S.Carman, Strength prediction and optimization of composites with statistical fiber flaw distributions, J. Comp. Mater., 26, 1678(1992)
  • 7J.Q.Zhang, J.Wu, S.L.Liu, Cyclically thermomechanical plasticity analysis for a broken fiber in ductile matrix composites using shear lag model, Comp. Sci. Tech., 62, 641(2002)
  • 8D.Liangbo, F.Fuqun, Statistical analysis of failure of unidirectionally fiber-reinforced composites with local loadsharing, Int. J. Fracture., 59(1), 69(1993)
  • 9Z.Xia, T.Okabe, W.A.Curtin, Shear-lag versus finite element models for stress transfer in fiber-reinforced composites, Comp. Sci. Tech., 62, 1141(2002)
  • 10C.M.Landis, R.M.Mcmeekng, A shear-lag model for a broken fiber embedded in a composite with a ductile matrix, Comp. Sci. Tech., 59, 447(1999)

二级参考文献40

  • 1茅人杰,Eng Fract Mech,1995年,5卷,3期,469页
  • 2孙国钧,复合材料学报,1995年,12卷,3期,96页
  • 3王奇山,博士学位论文,1995年
  • 4He M Y,Acta Metall Mater,1993年,41卷,871页
  • 5He M Y,Int J Solids Struct,1989年,25卷,9期,1053页
  • 6LANDIS C M, MCMEEKING R M. A shear-lag-model for a broken fiber embedded in a composite with a ductile matrix[J]. Composites Science and Technology, 1999, 59:447-457.
  • 7ZHANG J Q, WU J, LIU S L. Cyclically thermomechanical plasticity analysis for a broken fiber in ductile matrix composites using shear lag model [J]. Composites Science and Technology, 2002, 62 : 641-654.
  • 8HEYERLEIN J M. Stress concentration in filamentary structures [R]. NASA Technical Note, TN D-822, 1961.
  • 9BEYERLEIN I J, LANDIS C M. Shear-lag-model for failure simulations of unidirectional fiber composites including matrix stiffness [J]. Mechanics of Materials, 1999, 31:331-350.
  • 10Zeng W D et al. Composites Part A[J], 2002, 33:1159

共引文献22

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部