摘要
提出了用模糊神经网络的方法来建立煤粉流量模型.针对煤粉喷吹系统,模糊神经网络可以把它的工作空间分成若干个模糊区间,在每个区间中,用一局部模型来代表此系统;此方法克服了神经网络无法解释其联接权物理意义的不足.利用现场采集的数据进行实验,发现此方法不仅提高了准确度,而且可充分运用工作经验、专家知识。
The paper uses the FBM model to study the construction organism, cataract as the sample. First of all , hold that the best description of biological macromolecule -protein is FBM model. Secondly, apply the image texture analysis to the cataract macro properties; extend the two dimensional cataract data into one dimensional data according to the different window size and spreading style;use the maximum likelihood estimation (MLE) method to estimate the H value;then accomplish the segmentation and feature selection. Finally , point out that the best window size and spreading style is 6×6 and circle respectively, and that the Hurst parameter is the quantitative parameter of cataract diagnosis.
出处
《信息与控制》
CSCD
北大核心
1997年第4期306-310,共5页
Information and Control
关键词
模糊逻辑
神经网络
煤粉流量
喷吹系统
高炉
fractional brownian motion (FBM),image texture analysis, cataract, biological macromolecule