期刊文献+

Propagation of Density-Oscillations in Solutions to the Compressible Navier-Stokes-Poisson System

Propagation of Density-Oscillations in Solutions to the Compressible Navier-Stokes-Poisson System
原文传递
导出
摘要 Concerning a bounded sequence of finite energy weak solutions to the compressible Navier-Stokes-Poisson system (denoted by CNSP), which converges up to extraction of a subsequence, the limit system may not be the same system. By introducing Young measures as in [6, 15], the authors deduce the system (HCNSP) which the limit functions must satisfy. Then they solve this system in a subclass where Young measures are convex combinations of Dirac measures, to give the information on the propagation of density-oscillations. The results for strong solutions to (CNSP) (see Corollary 6.1) are also obtained.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2008年第5期501-520,共20页 数学年刊(B辑英文版)
基金 the National Natural Science Foundation of China (No. 10531020) the Program of 985Innovation Engineering on Information in Xiamen University (2004–2007) the New Century ExcellentTalents in Xiamen University
关键词 Compressible fluids Navier-Stokes-Poisson equations Young measures Propagation of oscillations Strong solutions 振荡传播 Navier-Stokes-Poisson体系 强解 可压缩流动性
  • 相关文献

参考文献3

二级参考文献38

  • 1李大潜,赵彦淳.GLOBAL SHOCK SOLUTIONS TO A CLASS OF PISTON PROBLEMS FOR THE SYSTEM OF ONE DIMENSIONAL ISENTROPIC FLOW[J].Chinese Annals of Mathematics,Series B,1991,12(4):495-499. 被引量:4
  • 2Stein, E., Singular Integrals and Differentiability, Princeton, Princeton Univ. Press. New .Jersey, 1970.
  • 3Wang, S., Quasineutral limit of Euler-Poisson system with and without viscosity, Comm. Partial Differential Equations, 29, 2004, 419-456.
  • 4Wang, S. and Jiang, S., The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 31, 2006, 571-591.
  • 5Besse. C., Claudel, J., Degond. P. et al, A model hierarchy for ionospheric plasma modeling, Math. Models Methods Appl. Sci., 14, 2004, 393-415.
  • 6Brenier, Y., Convergence of tile Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25, 2000, 737-754.
  • 7Brezis, H., Golse F. and Sentis R., Analyse asymptotique de l'equation de Poisson couplde a la relation de Boltzmann, Quasi-neutralite des plasmas, C. R. Acad. Sci. Paris. 321, 1995, 953-959.
  • 8Chen. F., Introduction to Plasma Physics and Controlled Fusion. Vol. 1, Plenum Press, New York, 1984.
  • 9Chen, G. Q., Jerome, J. W. and Wang, D. H., Compressible Euler-Maxwell equations, Transport Theory and Statistical Physics, 29, 2000, 311-331.
  • 10Cordier. S. and Grenier, E., Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations, 25, 2000, 1099-1113.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部