期刊文献+

具有H^∞跟踪特性的不确定性机器人神经网络控制 被引量:1

NEURAL NETWORK CONTROL OF UNCERTAINTY ROBOTIC MANIPULATOR WITH H ∞ TRACKING PERFORMANCE
下载PDF
导出
摘要 针对不确定性机器人提出一种具有H∞跟踪特性的神经网络(NN)控制器,使H∞控制理论与NN有机地结合起来.通过适当选择控制变量加权因子可以使由于NN近似误差以及外部干扰引起的误差动态衰减到期望的程度下.文中基于Lyapunov方法给出了NN学习自适应律,H∞跟踪特性的证明. In this paper, a Neural Network control with H ∞ tracking performance for uncertainty robotic manipulator is proposed. The control scheme combined H ∞ control theory and NN adptive algorithm organically. If the weight to control variables is appropriatly chosen, the influence of both NN aproximation error and external disturbance can be attenuated to a desired level. Based on Lyapunov method, NN learning law is given and H ∞ tracking performance is illustrated. Finally, the developed controller is applied to a two link robotic manipulator. Simulation results demonstrate that the control scheme is effective.
出处 《机器人》 EI CSCD 北大核心 1997年第5期338-343,共6页 Robot
基金 国家自然科学基金
关键词 H^∞跟踪控制 神经网络 机器人 运动控制 H ∞ Tracking control, neural network, robot
  • 相关文献

参考文献2

二级参考文献6

  • 1Jin L,Proc of American Control Conference,1992年
  • 2Chen F C,Proc of the American Control Conference,1992年
  • 3Chen F C,International Journal of Control,1992年,55卷,1299页
  • 4Chen F C,Proc of American Control Conference,1991年
  • 5Chen F C,IEEE Control Systems Magazine,1990年,10卷,44页
  • 6Li W,Proc American Control Conference,1989年

共引文献8

同被引文献14

  • 1An C H.Experimental evaluation of feed-forward and computed torque control[C]//Proceedings of IEEE Conference on Robotics and Automation,1987.
  • 2Luo Zhiwei,Fujii S,Saitoh Y,et al.Feedback-error learning for explicit force control of a robot manipulator interacting with unknown dynamic environment[C]//Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics,2004,8(4):260-267.
  • 3Tellez F O,GLoukianov A.Decentralized neural identification and control for uncertain nonlinear systems:application to planar robot[J].Journal of the Franklin Institute,2010,347:1015-1034.
  • 4Dirksz D A,Scherpen J M A.On tracking control of rigid-joint robots with only position measurements[J].IEEE Transactions on Control System Technology,2013,21(4):1510-1513.
  • 5王耀南.神经网络的非线性Kalman滤波学习算法及其在机器人控制中的应用[J].控制与决策,1995,24(6):679-683.
  • 6Ge S S,Hang C C,Woon L C J.Adaptive neural networks control of robot manipulators in task space[J].IEEE Transactions on Industrial Electronics,1997,44(6).
  • 7Chiddarwar S S,Babu N.Comparison of RBF and MLP neural networks to solve inverse kinematic problem for6R serial robot by a fusion approach[J].Engineering Applications of Artificial Intelligence,2010,23(7):1083-1092.
  • 8Yao J,Dash M,Tan S T,et al.Entropy-based fuzzy clustering and modeling[J].Fuzzy Sets and Systems,2000,113(3):382-388.
  • 9王华丽,周尚波.基于熵聚类的RBF神经网络学习算法[J].计算机仿真,2008,25(11):168-171. 被引量:4
  • 10张峰,杨剑锋,高锋阳.基于FPGA的机械臂位置测量系统研究[J].制造业自动化,2013,35(8):23-25. 被引量:5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部