摘要
针对不确定性机器人提出一种具有H∞跟踪特性的神经网络(NN)控制器,使H∞控制理论与NN有机地结合起来.通过适当选择控制变量加权因子可以使由于NN近似误差以及外部干扰引起的误差动态衰减到期望的程度下.文中基于Lyapunov方法给出了NN学习自适应律,H∞跟踪特性的证明.
In this paper, a Neural Network control with H ∞ tracking performance for uncertainty robotic manipulator is proposed. The control scheme combined H ∞ control theory and NN adptive algorithm organically. If the weight to control variables is appropriatly chosen, the influence of both NN aproximation error and external disturbance can be attenuated to a desired level. Based on Lyapunov method, NN learning law is given and H ∞ tracking performance is illustrated. Finally, the developed controller is applied to a two link robotic manipulator. Simulation results demonstrate that the control scheme is effective.
出处
《机器人》
EI
CSCD
北大核心
1997年第5期338-343,共6页
Robot
基金
国家自然科学基金