期刊文献+

遗传优化算法在基因数据分类中的应用 被引量:2

Genetic Algorithm for the Classification of Microarray Data
下载PDF
导出
摘要 本文提出了一种基于遗传算法的基因微阵列数据特征提取方法。首先对原始数据进行标准化,然后利用方差分析方法对数据进行降低维数处理,最后利用遗传算法对数据进行优化。针对基因数据对遗传算子和适应度函数进行设置,优化数据集选取特征基因,得到较小的特征子集。为了验证选取的特征,利用样本划分法通过判别分析建立分类器进行判定。实验论证此方法具有理想的分类效果,算法稳定、效率高。 This paper presents a feature selection method based on genetic algorithm (GA) and linear discriminant analysis (LDA). First, normalization and gene filtering are used to pre-process dataset. Then genetic algorithm is performed to select the best features. We use linear discfiminant analysis to form the fitness function. In the experiments, a good gene subset is obtained based on the global searching of microarray data. Experimental results prove our method is robust and efficient.
出处 《生物信息学》 2008年第3期119-122,共4页 Chinese Journal of Bioinformatics
基金 山东省自然科学基金 Y2006C96
关键词 基因数据 数据预处理 特征选取 遗传算法 分类评价 Microarrays data Data pre-processing Feature selection Genetic Algorithm Linear Diserirainant Analysis
  • 相关文献

参考文献15

  • 1[1]Golub T R,Slonim DK,Tamayo P,et al.Molecular classification of cancer class discovery and class prediction by gene expression monitoring[J].Science,1999,286:531-537.
  • 2[2]Eisen M B,Spellman P T,Brown P O,Botstein D.Ciustor analysis and display of genome wide expression patterns[J].Proc Natl Acad Sci USA,1998,95(25):14863-14868.
  • 3[3]Seal S,Komarina S,Alum S.An optimal hierarchical clustering algorithm for gone expression data[J].Information Processing Letters.2008,93(3):143-147.
  • 4[4]Daniela Bianchi,Raffaele Calogero and Brunello Tirozzi.Kohonen neural networks and genetic classification[J].Mathematical and Computer Modelling,2007,45(1-2):34-60.
  • 5[5]Ah-Hwee Tan,Hong Pan.Predictive neural networks for gene expression data analysis[J].Neural Networks,2005,18(3):297-306.
  • 6[6]Li Shen,Eng Chong Tan.Reducing multiclass cancer classification to binary by output coding and SVM[J].Computational Biology and Chemistry,2006,30(1):63-71.
  • 7[7]Edmundo Bonilla Huerta,Huerta Dural,and Jin-Kan Hao.A Hybrid GA/SVM Approach for Gene Selection and Classification of Miorcarray Data[J].EvoWorkshops,2006,3907:34-44.
  • 8俞振超,李通化,吴姗.PLS和SVM应用于基因表达数据分类[J].计算机与应用化学,2003,20(5):563-566. 被引量:7
  • 9[9]Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Trans.On Neural Networks,1999,10 (3):626-634.
  • 10张旭东,王亚东,李霞,苏小红.基于线性判别分析的基因表达数据分类方法研究[J].生物信息学,2006,4(1):8-12. 被引量:3

二级参考文献37

  • 1[1]Spellman,P.,Sherlock,G.,Zhang,M.,Iyer,V.,Anders,K.,Eisen,M.,Brown,P.,Botstein,D.and Futcher,B.Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization[J].Mol.Bio.Cell,1998,9:273-3297.
  • 2[2]Chu,S.,DeRisi,J.,Eisen,M.,Mulholland,J.,Botstein,D.,Brown,P.and Herskowitz,1.The transcriptional program of sporulation in budding yeast[J].Science,1998,282:699-705.
  • 3[3]Brown,M.,Grundy,W.,Lin,D.,Cristianini,N.,Sugnet,C.,Furey,T.,M.Ares,J.and Haussler,D.Knowledge-based analysis of microarray gene expression data by using support vector machines[J].Proc.Natl.Acad.Sci,USA,2000,97:262-267.
  • 4[4]Eisen,M.,Spellman,P.,Brown,P.and Botstein,D.Cluster analysis and display of genome-wide expression patterns[J].Proc.Natl,Acad.Sci.USA,1998,95:14863-104868.
  • 5[5]Alon,U.,Barkai,N.,Notterman,D.A.,Gish,K.,Mack,S.Y.D.and Levine,J.Broad patterns of gene expression revealed by clustering ananlysis of tumor and normal colon tissues probed by oligonucleotide arrays.Proc.Natl.Acad.Sci.USA,1999,96:6745-6750.
  • 6[6]Golub,T.,Slonim,D.,Tamayo,P.,Huard,C.,Gaasenbeek,M.,Mesirov,J.,Coller,H.,Loh,M.,Downing,J.,Caligiuri,M.,Bloomfield,C.and Lander,E.Molecular classification of cancer:class discovery and class prediction by egen expression monitoring.Science,1999,286:531-537.
  • 7[7]Li,L.,et al.,Gene assessment and sample classification for gene expression data using a genetiv algorithm/k-nearest neighbor method.Comb Chem High Throughput Screen,2001.4(8):727-739.
  • 8[8]LiX.,Rao S.,Moser K.,Elston R.,Olson J.,Guo Z.,Zhang T.,Zhang Q.Genetic Mapping of Complex Discrete Human Diseases by Discriminant Analysis.Progress in Natural Science.2002,12:431-437.
  • 9[9]Dodoit,S.,Fridlyand,J.and Speed,T.P.Comparison of discrimination methods for the classification of tumors using gene expression data.J.Am.Stat.Assoc.,2002,97(457):77-87.
  • 10[10]Gunn S.R.Support Vector Machines for Classifcation and Regression.1998.

共引文献24

同被引文献13

  • 1赵晖,荣莉莉,李晓.一种设计层次支持向量机多类分类器的新方法[J].计算机应用研究,2006,23(6):34-37. 被引量:20
  • 2Eisen M B,Spellman P T,Brown P O,et al.Cluster analysis and display of genome-wide expression patterns[J].Proc Nail Aead Sci,1998,95 (25):14863-14868.
  • 3Sudip S,Srikanth K,Srinivas A.An optimal hierarchical clustering algorithm for gene expression data[J].Information Processing Letters,2005,93(3):143-147.
  • 4Chen Xuefeng,He Zhengjia,Xiang Jiawei,et al.A dynamic multiscale lifting computation method using Daubechies wavelet[J].Journal of Computational and Applied Mathematics,2006,188(2):228-245.
  • 5Apnik V.The nature of statistical learning theory[M].New York:Springer,1995.
  • 6Golub T R,Slonim D K,Tamayo P,et al.Molecular classification of cancer class discovery and class prediction by gene expression monitoring[J].Seienee,1999,286:531-537.
  • 7Eisen MB, Spellman PT, Brown PO, et al. Cluster analysis and display of genome-wide expression patterns[J]. Proe Natl Acad Sci USA,1998,95(25):14863.
  • 8Seal S, Komarina S, Aluru S. An optimal hierarchical clustering algorithm for gene expression data[J].Inform Proe lett,2005,93(3) : 143.
  • 9Chen XF, He ZJ, Xiang JW, et al. A dynamic multi-scale lifting computation method using Daubechies wavelet[J]. J Comput Appl Math,2006,188(2),228.
  • 10Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer class discovery and class prediction by gene expression monitoring[J]. Science, 1999,286 : 531.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部