期刊文献+

语音增强中小波收缩阈值算法和阈值函数研究

Threshold algorithms and functions of wavelet shrinkage in speech enhancement
下载PDF
导出
摘要 小波收缩用于语音增强时,阈值算法和阈值函数是最重要的参量.为了在小波语音增强中得到可靠的选择方案,通过对这两种小波收缩参数进行分析,得到了相关数据结果,并给出SURE阈值算法和Universal阈值算法的对比结论.用常见的几种阈值函数分析软类阈值函数和硬类阈值函数,并给出了这两种参数对应选择的方法. Threshold algorithms and functions are the most important factors of wavelet shrinkage in speech enhancement. In order to get reliable selectable schemes, the paper analyzed two kinds of wavelet shrinkage parameter, compared the SURE and Universal threshold algorithms,and analyzed several kinds of threshold function, which were categorized into two major groups:soft functions and hard functions. The corresponding selection methods of the two groups of parameter are also presented.
作者 赵霞 高亚召
出处 《南昌工程学院学报》 CAS 2008年第4期44-47,共4页 Journal of Nanchang Institute of Technology
关键词 小波收缩 语音增强 阈值算法 阈值函数 wavelet shrinkage speech enhancement threshold algorithms threshold functions
  • 相关文献

参考文献12

  • 1Donoho D L. De-noising by Soft-thresholding[ J]. IEEE Trans. on Information Theory, 1995,41 (3) : 613 - 627.
  • 2Donoho D L. Nonlinear wavelet methods for recovering signals, images, and densities from indirect and noisy data[ A]. Proceedings of Symposia in Applied Mathematics, 1993,47 : 173 - 205.
  • 3Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage[ J]. Biometrika, 1994,81:425- 455.
  • 4Donoho D L. De-noising by sofi-thresholding[ J]. IEEE Trans. on Information Theory, 1995,41 (3) :613 - 62.
  • 5Donoho D L, Johnstone I M. Minimax estimation via wavelet shrinkage[ J]. Annals of Statistics, 1998,26(3):879- 921.
  • 6Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage[ J]. J. Amer Star Assoc, 1995,12(90): 1200- 1224.
  • 7Gao H Y, Bruce A G. Wave shrink with firm shrinkage[ J]. Statistica Sinica, 1997,7 (4):855- 874.
  • 8Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression[ J]. IEEE Trans. Image Proc., 2000,9: 1532- 1546.
  • 9Byung-Jun Yoon, Vaidyanathan P P. Wavelet-based denoising by customized thresholding[ A]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Canada, 17 - 21 May 2004,925 - 928.
  • 10Gao H Y. Wavelet shrinkage denoising using the nonnegative garrote [ J ]. J. Comput. Graph. Statist., 1998,7 ( 4 ) : 469 - 488.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部