期刊文献+

UASB生物制氢反应系统生物强化作用研究 被引量:1

Bioaugmentation Study on UASB Biohydrogen Production System
下载PDF
导出
摘要 采用上流式厌氧污泥床(UASB)反应器,以糖蜜废水为底物,利用厌氧活性污泥发酵产氢.向反应器中投加高产氢微生物产酸克雷伯氏菌HP1。探讨了生物强化作用对反应器产氢能力的影响.研究表明:在污泥接种量为30.0gVSS/L、启动负荷为6.0kgCOD/(m^3·d)、水力停留时间(HRT)为9h、投菌量为3%的条件下对生物制氢系统进行强化。可使反应系统产氢能力提高25%,并形成丁酸型发酵产氢,液相末端发酵产物中丁酸和乙酸的含量占挥发酸总含量的63%以上,气相中氢气含量在40%~52%之间。最大产氢量达4.52L/d. Bioaugmentation with hydrogen producing strain Klebsiella oxytoca HP1 in up-flow anaerobic sludge bed (UASB) reactor was studied. The optimum start-up condition for reactor was obtained as: sludge inoculants of 30.0 gVSS/L,initial organic loading rate of 6.0 kg COD/(m^3· d), hydraulic retention time of 9 h, and bacteria dosing inoculants of 3 %. Under the optimal conditions,the hydrogen production increased by 25 %,the hydrogen content in the biogas was about 40%-52%, the maximal hydrogen rate was 4.52 L/d.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期620-623,共4页 Journal of Xiamen University:Natural Science
基金 福建省自然科学基金(C0410002) 福建省科技项目(2005I016,2006H0091) 厦门大学新世纪优秀人才计划项目资助
关键词 UASB生物制氢 高效产氢菌 生物强化 UASB biohydrogen production hydrogen producing strain bioaugmentation
  • 相关文献

参考文献5

  • 1Saravanane R, Murthy D V S, Krishnaiah K. Bioaugmentation and treatment of cephalexin drug-based pharmaceutical effluent in an upflow anaerobic fluidized bed system [J].. Bioresource Technology, 2001,76 : 279 -- 281.
  • 2Guiot S R, Tawfiki-Hajji K, Lepine F. Immobilization strategies for bioaugmentation of anaerobic reactors treating phenolic compounds[J]. Water Science and Technology, 2000,42 : 245 -- 250.
  • 3任南琪,宫曼丽,邢德峰.连续流生物制氢反应器乙醇型发酵的运行特性[J].环境科学,2004,25(6):113-116. 被引量:21
  • 4Minnan L,Jinli H, Xiaobin W, et al. Isolation and characterization of a high H2-producing strain Klebsiella oxytoca HP1 from a hot spring[J]. Research in Microbiology, 2005,156: 76--81.
  • 5国家环保局.水和废水分析方法[M].3版.北京:中国环境科学出版社.1989.

二级参考文献15

  • 1任南琪 王宝贞.有机废水发酵法生物制氢技术--原理与方法[M].哈尔滨:黑龙江科学技术出版社,1994..
  • 2[1]Miyake M,Schnackenberg J,Nakamura C,Asada Y,Miyake J.Molecular handling of hydrogenase[A].In:Miyake J,Matsunaga T,Pietro AS,Miyake J,Matsunaga T,Pietro AS.Biohydrogen II[C].Amsterdam,The Netherlands:Elsevier Publishers,2001.205~219.
  • 3[2]Zaborsky OR.Biohydrogen[M].New York,USA:Plenum Press,1998.
  • 4[3]Benemann J.Hydrogen biotechnology:progress and prospects[J].Nat Biotechnol.,1996,14:1101~1103.
  • 5[4]Debabrata D,Vezirolu TN.Hydrogen production by biological processes:a survey of literature[J].Internationd J Hydrogen Energy,2001,26:13~28.
  • 6[5]Hallenbech PC,Benemann JR.Biological hydrogen production:fundamentals and limiting process[J].International Journal of Hydrogen Energy,2000,27:1185~1193.
  • 7[6]Tanisho S,Ishiwata Y.Continuous Hydrogen Production from Molassess by the Bacterium Enterobacter Aerogenes [J].Int J Hydrogen Energy,1994,19(10):807~812.
  • 8[8]Cohen A,Gemert JM,Zoeremeyer RJ,Breure AM.Main Characteristics and Stoichiometric Aspects of Acidogenesis of Soluble Carbohydrate Containing Wastewater[J].Pro.Biochem.,1984,19(6):228~232.
  • 9[9]Mizuno O,Dinsdale R,Hawkes FR,Hawkes DL,Noike T.Enhancement of hydrogen production from Glucose by Nitrogen Gas Sparging[J].Bioresource Technology,2000,73:59~65.
  • 10[10]Sung S,Raskin L,Duangmanee T,Padmasiri S,Simmons JJ.Hydrogen Production by Anaerobic Microbial Communities Exposed to Repeated Heat Treatments.Proceedings of the 2002 U.S.DOE Hydrogen Program Review,2002,NREL/CP-610-32405.

共引文献22

同被引文献19

  • 1李永峰,任南琪,胡立杰,史英.生物制氢系统及其产氢机制[J].能源环境保护,2005,19(2):5-7. 被引量:8
  • 2张薇,左剑恶,崔龙涛,邢薇,杨洋.中温和高温厌氧生物产氢反应器连续运行的研究[J].环境科学,2006,27(1):63-68. 被引量:8
  • 3任南珙,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004.
  • 4李艳娜,许科伟,堵国成,陈坚,刘和.厌氧生境体系中产氢产乙酸细菌的FISH定量解析[J].微生物学报,2007,47(6):1038-1043. 被引量:18
  • 5HARRMSEN H, HARRY M P, ANTOON D L, et al. Detection and localization of syntrophic propionate - oxidizing bacteria in granular sludge by In situ hybridization using 16S rRNA - based oligonucle- otide probes[J]. Applied and Environmental Microbiology, 1996, 62(5) :1656 - 1663.
  • 6HARRMSEN H,AKKERMANS A, STAMS A, et al. Population dy- namics of propionate - oxidizing bacteria under methanogenic and sulfidogenic conditions in anaerobic granular sludge [ J ]. Applied and Environmental Microbiology, 1996, 62 (6) :2163 -2168.
  • 7Chu C F,Li Y Y,Xu K Q,et al. A pH - and temperature - phased two - stage process for hydrogen and methane production from food waste [ J ]. International Journal of Hydrogen Energy, 2008,33 ( 18 ) :4739 - 4746.
  • 8Borzaccni L, Lopez I, Passeggi M, et al. Sludge Deterioration in a Full Scale UASB Reactor After a pH Drop Working Under Low Loading Conditions [ J ]. Water Science & Technology, 2008,57 (5) :797 -802.
  • 9Hanne Tahti, Prasad Kaparaju,Jukka Rintala. Hydrogen and meth- ane production in extreme thermophilic conditions in two- stage (upflow anaerobic sludge bed) UASB reactor system[ J ]. Interna- tional Journal of Hydrogen Energy,2013,38:4997 -5002.
  • 10Kyung - Won Jung, Dang - Hoon Kim, Hang - Sik Shin. Continu- ous fermentation hydrogen production from coffee drink manufactur- ing wastewater by applying UASB reactor[J]. International Journal of Hydrogen Energy ,2010,35 : 13370 - 13378.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部