期刊文献+

拟三角拟Hopf代数上的量子交换代数 被引量:2

Quantum Commutative Algebra over Quasitriangular Quasi-Hopf Algebra
下载PDF
导出
摘要 设(H,Δ,ε,Φ,R,S)是一个拟三角拟Hopf代数,A是一个关于(H,R)量子交换的左H-模代数.证明了(A#HM,A,A)是一个张量范畴,并且给出了它成为一个辫化张量范畴的充分必要条件. In this paper, let (H,△.ε,Ф,R,S) be a quasitriangular quasi-Hopf algebra, A a left H-module algebra and quantum commutative with respect to (H,R) , then the category (A#HM,×A,A) is a monoidal category. Studying a necessary and sufficient condition for it becomes a braided monoidal category.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期9-12,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省教育厅自然科学基金(200510476001)
关键词 拟三角拟Hopf代数 量子交换代数 辫化张量范畴 quasitriangular quasi-Hopf algebra quantum commutative algebra braided monoidal category
  • 相关文献

参考文献7

  • 1Manin Yu I. Quantum Groups and Non commutative Geometry[M]. Montreal:Publ du Centre de Recherches Math, 1988.
  • 2Cohen M,Westreich S. From supersymmetry to quantum commutativity[J]. J Alg, 1994,168:1-27.
  • 3胡国权,许永华.量子交换代数及其对偶[J].中国科学(A辑),1996,26(10):892-900. 被引量:3
  • 4Montgomery S. Hopf Algebras and Their actions on Rings[M]. Providence : American Math Society, 1993.
  • 5Kassel C. Quantum Groups[M]. New York/Berlin : Springer-Verlag, 1995.
  • 6Bulacu D,Nauwelaerts E. Dual Quasi-Hopf algebra coactions, smash coproducts and relative Hopf modules[J]. Rev Roum Math Pures Appl,2002,47(4) :415-443.
  • 7Bulacu D,Panaite F,Oystaeyen F V. Quasi-Hopf algebra actions, smash products[J]. Comm Alg,2000,28(2):631-651.

共引文献2

同被引文献13

  • 1胡国权,许永华.量子交换代数及其对偶[J].中国科学(A辑),1996,26(10):892-900. 被引量:3
  • 2Kassel C. Quantum Groups[M]. New York/Berlin:Springer-Verlag,1995.
  • 3Larson R G, Tower J. Two dual classes of bialgebras related to the concepts of quantum guoup and quantum Lie algebra[J]. Comm in Alg,1991,19(12):3295-3345.
  • 4Cohen M, Westreich S. From supersymmetry to quantum commutativity[J]. J Alg,1994,168:l-27.
  • 5Bulacu D, Nauwelaerts E. Duat Quasi-Hopf algebra coactions, smash coproducts and retative Hopf modules[J]. Rev Roum Math Pures Appt,2002,47(4) :415-443.
  • 6Blattner R J, Cohen M, Montgomery S. Crossed products and inner actions of Hopf algebras[J]. Trans AMS, 1986,289:671-711.
  • 7Larson R, Towber J . Two dual classes of bialgebras related to the concepts of "quantum groups" and "quantum Lie algebras"[J]. Comm Algebra, 1991,19 : 3295-3345.
  • 8Ma Tianshui, Wang Shuanhong, General double quantum groups[J]. Comm Algebra,2010,38(2) : 645-672.
  • 9Wang Shuanhong. On the braided structures of bicrossproduct Hopf algebras[J]. Tsukuba J Math,2001,25:103-120.
  • 10Wang Shuanhong. On braided Hopf algebra structures over the twisted smash products[J]. Comm Algebra, 1999,27:5561-5573.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部