期刊文献+

小麦16.9kD热激蛋白cDNA克隆及其表达分析 被引量:7

Cloning and Expression of Ta HSP16.9-1 cDNA in Wheat
下载PDF
导出
摘要 为进一步了解小分子量热激蛋白在小麦耐热能力中的作用,根据玉米16.9 kD小分子热激蛋白的氨基酸序列,采用同源序列法进行序列拼接和引物设计,用RT-PCR扩增获得了1个源自小麦叶片的热激蛋白基因cDNA片段,即TaHSP16.9-1(GenBank登录号为EU649679)。TaHSP16.9-1全长770 bp,5′非翻译区81 bp,3′非翻译区233 bp,开放阅读框编码151个氨基酸。序列分析结果表明,此蛋白与已知单子叶植物来源的同类基因高度同源,相似性介于78.3%-96.7%之间。定量RT-PCR表达谱分析显示,TaHSP16.9-1在小麦抽穗期的茎和旗叶以及幼苗期叶片中均能表达,其在小麦幼苗叶片中的表达受高温胁迫的诱导。 Using maize low molecular weight heat shock protein (GenBank accession No. CAA46641) amino acid sequence as a querying probe, many highly homologous EST sequences were obtained from GenBank and a putative cDNA sequence of wheat (Triticurn aestivurn L. ) was assembled. Futhermore, a wheat 16. 9 kD HSP gene cDNA, named as TaHSP16. 9-1 (GenBank accession number EU649679) was cloned. TaHSP16.9-1 was 756 bp in full length, including 5' untranslated region of 82 bp, 3' untranslated region of 218 bp, and an open reading frame (ORF) encoding 151 amino acids. Homology analysis showed that the deduced amino acid sequence of TaHSP16.9-1 shared 78.3- 96.7% identity with 16. 9 kD HSP from other monocotyledon. Quantity RT-PCR analysis showed that the TaHSP16.9-1 was expressed in mature wheat stems, immature spikes and immature leaves. The expression profiling also showed that TaHSP16.9-1 expression was up-regulated by heat shock in wheat seedlings.
出处 《麦类作物学报》 CAS CSCD 北大核心 2008年第5期719-723,共5页 Journal of Triticeae Crops
基金 国家自然科学基金项目(30370877) 河南省科技成果转化项目(0636000005)
关键词 小麦 HSP16.9 基因克隆 基因表达 Wheat Hsp16.9 Gene doning Gene expression
  • 相关文献

参考文献15

  • 1Ferris R, Ellis R H, Wheeeler T R, etal. Effect of high temperature stress at anthesis on grain yield and biomass of field grown crops of wheat [J]. Plant Cell Environment, 1998, 34, 67-78.
  • 2Perrotta C, Treglia A S, Mita G, etal. Analysis of mRNAs from ripening wheat seeds: the effect of high temperature [J]. Journal of Cereal Science, 1998, 27: 127-132.
  • 3Houghton, J T, Ding, Y, Griggs, D J, et al. Climate Change 2001: Scientific Basis [ M]. Cambridge University Press, New York, USA, 2001:537.
  • 4Koh Iba. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tol erance [J]. Annual Review of Plant Biology, 2002, 53:225-245.
  • 5Feder M E, Hoffman G E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology [J]. Annual Review of Physiology, 1999, 61: 243-282.
  • 6Schoffl, Prandl R, Reindl A. Molecular responses to heat stress[C]// K. Shinozaki and K. Yamaguchi-Shinozaki, Editors. Molecular responses to cold, drought, heat and salt stress in higher plants. R.G. Landes Co. , Austin, Texas , 1999,:81 - 98.
  • 7Camejo D, Rodriguez P, Morales M A, etal. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility [J]. Journal of Plant Physi ology, 2005, 162.. 281-289.
  • 8Ahn Y J, Zimmerman J L. Introduction of the carrot HSP17.7 into potato (Solanum tuberosum L. ) enhances cellular membrane stability and tuberization in vitro [J]. Plant Cell Environment, 2006, 29 : 95--104.
  • 9Momcilovic I, Ristic Z. Expression of chloroplast protein synthesis elongation factor, EF Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development [J]. Journal of Plant Physiology, 2007, 164: 90--99.
  • 10Wahid A, Gelani S, Ashra( M, et al. Heat tolerance in plants [J]. Environmental and Experimental Botany, 2007, 61: 199--223.

同被引文献96

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部