期刊文献+

球Besel函数的数值计算 被引量:1

Computation of Spherical Bessel Functions
下载PDF
导出
摘要 本文详细分析了整数阶球Besel函数及其各阶导数的递推算法,给出了计算球Besel函数值所需要的数学公式。对工程电磁场实际问题的编程计算结果表明,递推算法不仅编程简单,而且计算精度也是相当高的。 A recurrence algorithm for computing spherical Bessel functions of integer orders is presented and the formulas are given in this paper. By calculating and analysis an electromagnetic field engineering example, it is shown that the algorithm is simple and has high accuracy.
出处 《云南师范大学学报(自然科学版)》 1997年第3期33-37,共5页 Journal of Yunnan Normal University:Natural Sciences Edition
关键词 球Besel函数 递推算法 电磁场 spherical Bessel function recurrence algorithm electromagnetic field
  • 相关文献

参考文献2

二级参考文献3

共引文献8

同被引文献10

  • 1郑勤红,盛剑霓,解福瑶,李明,梁立,李景天.电磁场分析中三维标量Hemholtz方程的多极理论[J].云南师范大学学报(自然科学版),1995,15(3):53-57. 被引量:3
  • 2郑勤红,解福尧,李景天,盛剑霓.电磁场分析中有关球谐函数项的应用研究[J].云南师范大学学报(自然科学版),1996,16(3):40-44. 被引量:1
  • 3Zheng Q, Yi J, Zeng H, et al. Multipole theory analysis of axisymmetric modes in rotationally symmetric cavities [J]. Microwave and Optical Technology Letters, 2001, 29(6): 412-415.
  • 4Wang J S, Ida N. Curvilnear and higher order "edge" finite elements in electromagnetic field computation[J]. IEEE Trans. Magn. , 1993, 29(2): 1491-1494.
  • 5Su C C, Guan J M. Finite-difference analysis of dielectric-loaded cavities using the simultaneous iteration of the power method with the Chebyshev acceleration technique[J]. IEEE Trans. Microwave Theory Tech. , 1994, 42(10) : 1998-2006.
  • 6Kanai Y, Tsukamoto T, Miyakawa M, et al. Resonant frequency analysis of reentrant resonant cavity applicator by using FEM and FD-TD method[J]. IEEE Trans. Magn. , 2000, 36(4) : 1750-1753.
  • 7Monsoriu J A, Andres M V, Silvestre E, et al. Analysis of dielectric-loaded cavities using an orthonormal-basis method[J]. IEEE Trans. Microwave Theory Tech. , 2002, 50(11): 2545-2552.
  • 8Amiri A M S Z, Naeini S S, Chaudhuri S K, et al. Generalized reaction and unrestricted variational formulation of cavity resonators-part I: basic theory[J]. IEEE Trans. Microwave Theory Tech. , 2002, 50(11): 2480-2490.
  • 9Zheng Q, Xie F, Lin W. Solution of three-dimensional Helmholtz equation by multipole theory method[J]. Journal of Electromagnetic Waves and Applications, 1999, 13(3): 339-357.
  • 10郑勤红,曾华,解福瑶.用多极理论分析圆桩对称微波谐振腔[J].强激光与粒子束,2001,13(1):89-92. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部