摘要
考虑由状态空间模型描述且非线性依赖摄动参量的线性离散时间不确定系统.求其参数最大摄动域以使摄动后的系统极点仍位于某给定的国内(单位国中的),且系统的H_2性能仍小于某给定上界.本文将给出参量的最大摄动区间的计算公式(对单参数情况),以及最大摄动圆盘的算法(对两参数情况),且指出极点分布鲁棒性与H_2性能鲁棒性在哲理上的相似性.
How large perturbation for uncertain parameters of linear discrete-time uncertain systems can be allowed so that the poles of perturbed systems still lie in a given circle region (in the unit circle), and the H_2-performance is still less than a given upper bound. The systems considered are discribed by a state space model which depends nonlinerly on some perturbation parameters. This paper will give formulas for calculating the maximal parametric perturbation interval (in single-parameter cases), and algorithm for calculating the maximal parametric perturbation disk (in two-parameters cases), and also corroborate philosophically the similarity between pole location robustness and H_2- performance robustness.
出处
《青岛大学学报(自然科学版)》
CAS
1997年第3期8-14,共7页
Journal of Qingdao University(Natural Science Edition)
基金
山东省自然科学基金
关键词
H2性能
极点分布
鲁棒性
离散系统
线性系统
H_2-performance
pole location
robustness
nonlinear perturbation
state space model