期刊文献+

基于关联系数的Apriori算法改进

Updating of Apriori Algorithm Based on Correlation Coefficientr
下载PDF
导出
摘要 分析了Apriori核心算法,说明了其设计思想上的不足,引进了兴趣度的概念。主要定义了基于协方差关联系数的兴趣度,并因此而设计了基于此兴趣度定义的关联规则挖掘算法,该算法能够更准确地挖掘出交易集中不同产品间的紧密相关性,减少产生的无用规则。 Based on the analysis of apriori algorithm, the paper points out the defects of its design and adopts the concept of interest measure, defines the interest measure that is based on the covariance correlation coefficient. Therefore the paper designs a mining algorithm of association rules which is based on the new definition of interest measure. The algorithm can more accurately mine the close relations among different products in the database and decrease the useless rules.
出处 《苏州科技学院学报(工程技术版)》 CAS 2008年第3期61-65,共5页 Journal of Suzhou University of Science and Technology (Engineering and Technology)
基金 四川省教育厅科研基金资助课题(2006C047) 宜宾学院青年基金资助课题(QJ05-08)
关键词 兴趣度 关联系数 关联规则 协方差 interest measure correlation coefficient association rules covariance
  • 相关文献

参考文献6

  • 1范明 孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 2[2]Agrawal R,Imielinski T,Swami A.Mining association rules between set of items in large databases[C]//In:Proceedings of the 1993 ACMSIGMOD Conference on Management of Data,Washington,D.C.,1993:207-216.
  • 3[3]Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[C]//In:Proceedings of the 2000 ACMSIGMOD Conference On Manage merit of Data,DaUas,TX,2000:1-12.
  • 4[4]Srikant R,Agrawal R.Mining generalized association rules[C]//In:Proc of 21th Int'l Conf on Very Large Data Bases.Zurich,Switzerland:Mor ganKaufmann,1995:407-419.
  • 5[5]Srikant R,Agrawal R.Mining quantitative association rules in large relational tables[C]//In:Proceedings of 1996 ACM SIGMOD Int'l Conf onangement of Data.Montreal,Quebec,Canada:ACM Pres,1996:1-12.
  • 6[6]Savasere A,Omiecinski E,Navathe S B.Mining for strong negative associations in a large database of customer trnsaction[C]//In:Proc of the 14th hat'l Conf on Data Engineering.Orlando,Florida,USA:IEEE Computer Society Press,1998:494,502.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部