期刊文献+

机械球磨对碳纳米管电化学性能的影响 被引量:3

Effects of Mechanical Ball Milling on the Electrochemical Reactivity of Carbon Nanotubes
下载PDF
导出
摘要 通过改变机械球磨时间制备了不同长度的多壁碳纳米管(MWNTs)。透射电子显微镜(TEM)显示随着球磨时间的增加,碳纳米管的长度变短,管壁缺陷增多。利用循环伏安(CV)和交流阻抗(EIS)考察了球磨0、0.5、2、5 h MWNTs修饰电极在K3[Fe(CN)6]溶液中的电化学行为。CV显示球磨5 h碳纳米管修饰电极的氧化峰电流Ipa为18.53μA,比没有球磨的碳纳米管修饰电极的氧化峰电流Ipa(12.50μA)增大约50%。EIS谱图显示球磨后的MWNTs更能有效地促进Fe(CN)63–的扩散和电子转移,具有更高的电化学活性。 The multiwalled carbon nanotubes (MWNTs) with different length were prepared by changing mechanical ball milling time. The results of transmission electron microscopy showed the length of MWNTs became short and the detects increased with increasing milling time. The electrochemical activities of milled 0, 0.5, 2, 5 h MWNTs modified electrode in K3[Fe(CN)6] were examined by using cyclic voltametry (CV) and electrochemical impedance spectrum (EIS). CV showed that the oxidation peak current Ipa of 5 h milled MWNTs modified electrode was 18.53 μA, which increased more than about 50 % compared with that of original MWNTs modified electrode(12.50 μA). The electrochemical impedance spectrum indicated that the milled MWNTs could effectively promote the difthsion and electron transfer of Fe(CN)63 , and expressed higher electrochemical reactivity.
出处 《广东化工》 CAS 2008年第9期14-17,共4页 Guangdong Chemical Industry
关键词 机械球磨 MWNTS 修饰电极 电化学活性 mechanical ball milling multiwalled carbon nanotubes modified electrode electrochemical reactivity
  • 相关文献

参考文献12

  • 1Iijima S. Helical microtubules of graphitie carbon[J]. Nature, 1991,354(6348): 56-58.
  • 2Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbonnanotubes[J]. Nature, 1996, 382: 54-55.
  • 3Treacy M M J, Ebbesen T W, Gibson J M. Exceptionallyhigh Young's modulus observed for individual carbonnanotubes[J]. Nature, 1996, 381: 678-680.
  • 4Li W Z, Wen J G, Senett M, et al. Clean double-walled carbon nanotubes synthesized by CVD[J]. Chemical Physics Letter, 2003, 368: 299-306.
  • 5Wang J. Electropolymerization on Microelectrodes: Functionalization technique for selective protein and DNA conjugation[J]. Electroanalysis, 2005, 17(1): 7-14.
  • 6Tan X C, Li M J, Cai P X, et al. Protein-based biosensors using nanomaterials[J]. Anal. Biochem, 2005, 337(1): 111-120.
  • 7谭学才,麦智彬,韦冬萍,邓光辉,黄在银,蔡沛祥.多壁碳纳米管-Nafion复合膜修饰玻碳电极测定硝苯地平的研究[J].分析化学,2007,35(4):495-499. 被引量:13
  • 8刘芙,张孝彬,涂江平,程继鹏,孔凡志,孙沿林,卢焕明,陈长聘.碳纳米管的球磨处理及其对储氢性能的影响[J].太阳能学报,2003,24(1):116-120. 被引量:15
  • 9Pierard. N, Fonseca. A, Konya. Z, et al. Production of short carbon nanotubes with open tips by ball milling[J]. Chemical Physics Letter, 2001, 335 : 1-8.
  • 10米常焕,曹高劭,赵新兵.多壁碳纳米管的球磨特性及其嵌锂行为[J].材料导报,2004,18(11):92-94. 被引量:4

二级参考文献47

  • 1麦智彬,谭学才,邹小勇.基于碳纳米管的化学修饰电极及电化学生物传感器的研究进展[J].分析测试学报,2006,25(3):120-125. 被引量:22
  • 2麦智彬,谭学才,邹小勇.一种基于碳纳米管的安培型过氧化氢生物传感器[J].分析化学,2006,34(6):801-804. 被引量:16
  • 3[1]Iijima S. Helical microtubules of graphitic carbon[J].Nature, 1991, 354(6348): 56-58.
  • 4[2]Dresselhaus M S. Fullerenes: Down the stright and narrow[J]. Nature, 1992, 358: 195-197.
  • 5[3]Ebbesen TW, Lezec HJ, Hiura H, et al. Electrical conductivity of individual carbon nanotubes [J]. Nature,1996, 382: 54-55.
  • 6[4]Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young' s modulus observed for individual carbon nanotubes[J]. Nature, 1996, 381: 678-680.
  • 7[5]Disma F, Aymard L, Dupont L, et al. Effect of mechanical grinding on the lithium intercalation process in graphites and soft carbon[J]. J Electrochem Soc, 1996,143: 3959-3971.
  • 8[6]Cheng Hui ming, Yang Quan hong, Liu Chang. Hydrogen storage in carbon nanotubes[J]. Carbon, 2001, 39:1447-1454.
  • 9[7]Chambers A, Park C, Baker RTK, et al. Hydrogen storage in graphite nanofibers [J]. J Phys Chem B,1998, 102: 4253-4256.
  • 10[8]Dillon A C, Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-walled carbon nanotubes [J]. Nature, 1997, 386: 377-378.

共引文献28

同被引文献20

  • 1张万红,方亮.奥贝球铁齿轮热处理工艺的研究[J].热加工工艺,2004,33(11):50-51. 被引量:2
  • 2刘培松.碳纳米管及其在锂离子电池中的应用[J].新材料产业,2007(6):39-42. 被引量:3
  • 3Padlhi A K,Nanjundaswamy K S, Goodenough J B, et al. Phospho-olvinines as positive-electrode materials for rechargeable lithium batteries [ J]. Journal of the Electrochemistry Society, 1997, 144(4) : 1188-1194.
  • 4Padhi A K,Nanjundawamy K S,Goodenough J B,et al. Effect of structure on the Fe^3+/Fe^2+. redox couple in iron phosphates [ J ]. J Electrochem Soc, 1997,144 ( 5 ) : 1609-1613.
  • 5Kim J K, Cheruvally G, Ahn J H, et al. Electrochemical properties of carbon-coated LiFePO4 synthesized by a modified mechanical activation process [ J ]. Journal of Physics and Chemistry of Solids, 2008, 69: 2371- 2377.
  • 6Chung S Y ,Jason T B,Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Materials, 2002, 1 (10) : 123-128.
  • 7Lawrence N S, Deo R P, Wang J. Comparison of the electrochemical reactivity of electrodes modified with carbon nanotubes from different sources [ J ]. Electroanalysis ,2005,17 ( 1 ) :65.
  • 8YANG Jun,JIE Jing-ying. The test of theory and technology about chemical electrical source[ M ]. Beijing: Chemical Industry Press, 2006: 47-48.
  • 9Sumio Lijima. Helical Microtubules of Graphitie Carbon[J]. Nature, 1991, 354(7) : 56 -58.
  • 10Chang Chiaraing, Liu Yingling. Functionalization of Multi - walled Carbon Nanotubes with Non - reactive Polymers through an Ozone - mediated Process for the Preparation of a Wide Range of High Performance Polymer/carbon Nanotube Composites[J]. Carbon, 2010,(48) :1289 -1297.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部