期刊文献+

脊髓损伤患者的下肢功能重建:智能化康复手段 被引量:15

Reconstruction of Lower Extremities Function in Spinal Cord Injury Patients:Intelligent Methods (review)
下载PDF
导出
摘要 现代科学技术发展为脊髓损伤患者重建下肢功能提供了新的手段,如脑-机接口技术、神经假体、康复机器人、减重步行训练等。在临床实践中,上述康复手段的优点和缺点日益凸显,其结合应用成为一种研究趋势。应根据智能化的特点及患者自身状况,选择合适的康复手段。 The advance of the modern science and technology provides some new approaches, such as brain computer interface (BCI), neuroprothesis, rehabilitation robots, body-weight supported treadmill training (BWST), etc. In practice, the advantages and disadvantages of those approaches manifest more and more, and the combination of them is the trend. It is necessary to choose proper method individually.
出处 《中国康复理论与实践》 CSCD 2008年第9期845-846,共2页 Chinese Journal of Rehabilitation Theory and Practice
关键词 脊髓损伤 下肢功能 步行 脑-机接口技术 神经假体 康复机器人 减重步行训练 综述 spinal cord injury lower limbs function walking brain-computer interface neuroprothesis rehabilitation robots body-weighted supported treadmill training review
  • 相关文献

参考文献26

  • 1Behrman AL, Harkema SJ. Physical rehabilitation as an agent for recovery after spinal cord injury[J]. Phys Med Rehabil Clin N Am, 2007,18(2) : 183-- 202.
  • 2Wolpaw jR. Birbaumer N,McFarland DJ, et al. Brain-computer interfaces for communication and control [J]. Clin Neurophysiol, 2002, 113(6): 767--791.
  • 3Ikeda A. Human supplementary motor area: a role in voluntary movements and its clinical significanee[J]. Rinsho Shinkelgaku, 2007, 47(1):8-20.
  • 4任宇鹏,王广志,高小榕,季林红.机器人辅助运动功能康复中的控制和评估策略[J].机器人技术与应用,2003(4):40-44. 被引量:15
  • 5Muller-Putz GR, Scherer R, Pfurtscheller G, et al. EEG-based neuroprosthesis control: a step towards clinical practice[J]. Neurosci Lett, 2005, 382(1--2):169--174.
  • 6Sitaram R,Zhang H, Guan C, et al. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface[J]. Neuroimage, 2007, 34(4): 1416--1427.
  • 7Boord P,Barriskill A, Craig A, et al. Brain-computer interface-FES integration: Towards a hands-free neuroprosthesis command system [J]. Neuromodulation, 2004,7 (4): 267-276.
  • 8Muller-Putz GR, Scherer R, Pfurtscheller G, et al. Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation[J]. Biomed Tech (Berl), 2006, 51(2) : 57--63.
  • 9Prochazka A, Mushahwar VK, McCreey DB. Neural protheses[J]. J Physiol,2001,533(1) :99-- 109.
  • 10Knutson JS, Hoyen HA, Kilgore KL, et al. Simulated neuroprosthesis state activation and hand position control using myoelectric signals from wrist muscles[J]. J Rehabil Res Dev, 2004, 41(3B): 461--472.

二级参考文献46

  • 1张立勋 孟庆鑫 张今瑜.机电一体化系统设计[M].哈尔滨:哈尔滨工程大学出版社,2000..
  • 2Jack David,Boian Rares.Virtual reality-enhanced strocke rehabilitation[J].IEEE Transaction on NeuralSystems and Rehabilitation Engineering,2001,9(3):1 08-111.
  • 3Girone M,Burdea G,Bouzit M,Popescu V. A steward platform - based for ankle tele - rehabilitation[J ]. Journal of Automation Robots,2001, (10): 12- 16.
  • 4王宗培.直流电动机及其控制系统[M].哈尔滨:哈尔滨工业大学出版社,1981..
  • 5Dietz V, Harkema SJ. Locomotor activity in spinal cord-injured persons. J Appl Physiol, 2004,96 : 1954-1960.
  • 6Schwab ME. Repairing the injured spinal cord. Science, 2002,295 :1029-1031.
  • 7Harkenma SJ. Neural plasticity after human spinal cord injury:application of locomotor training to the rehabilitation of walking. Neuroscientist, 2001,7:455-468.
  • 8Care TJ. Innervation of locomotor movements by the lumbosacral cord in birds and mammals. J Exp Biol, 1962,39:239-242.
  • 9Grillner S. Locomotion in the spinal cat. In: Stein RB, Pearson KG,Smith RS,et al, eds. Control of posture and locomotion. Advances in behavioral biology. New York : Plenum Press, 1973:515-535.
  • 10Grillner S. Control of locomotion in bipeds, tetrapods and fish. In:Brookhart JM, Mountcastle VB, eds. Handbook of Physiology. Am Physiol Soc, 1981,26 : 1179-1236.

共引文献34

同被引文献233

引证文献15

二级引证文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部