期刊文献+

具抛物型动力边界条件的Laplace方程解的爆破

Blow-up for Laplace Equation with Dynamical Boundary Conditions of Parabolic Type
下载PDF
导出
摘要 讨论了具非线性动力边界条件的Laplace方程解的爆破,在边界条件为半线性抛物型且初始能量为负及边界源项满足一定条件下,利用凸性方法得到了解的爆破性. The blow-up for Laplace equation with dynamical boundary condition is considered . By the concavity method, the blow-up of the solution is proved under the condition that the boundary condition is semilincar parabolic type and the initial energy is negative.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2008年第4期481-483,共3页 Journal of Xinyang Normal University(Natural Science Edition)
基金 河南省自然科学基金项目(0611053300) 河南省中青年骨干教师培养基金项目(200510463024) 河南省教育厅基础科学基金项目(200411003)
关键词 LAPLACE方程 动力边界条件 凸性方法 爆破 Laplace equation dynamical boundary condition concavity blow-up
  • 相关文献

参考文献10

  • 1Benjamin T, Olver P. Hamiltonian Structure,Symmetries and Conservation Laws for Water Waves [ J ]. J Fluid Mech (S0022-1120), 1982,125: 137-185.
  • 2Hintermann T. Evolution Equations with Dynamic Boundary Conditions[ J]. Proceed Royal Soc Edinburgh(S0308-2105), 1989,113A:43-60.
  • 3Escher J. Nonlinear Elliptic Systems with Dynamic Boundary Conditions [J]. Math Z (S1432-1823), 1992, 210:413-439.
  • 4Lions J L. Quelques Methodes Resolutions des Problemes aux Limites Nonlineaires [ M]. Paris:Dunod, 1969.
  • 5Fila M, Quittner P. Global Solutions of the Laplace Equation with a Nonlinear Dynamical Boundary Cond/tions[ J], Math Meth Appl Sci ( S0170-4214), 1997,20,1325-1331.
  • 6Kirane M. Blow-up for Some Equations with Semilinear Dynamical Boundary Conditions of Parabolic and Hyperbolic Type[J]. Hokkaido Math J (S0385-4035), 1992,21:221-229.
  • 7Lieberman G M. Study of Global Solutions of Parabolic Equations via a Priori Estimates Ⅱ[ C ]//Comm Appl Nonlin Anal, 1994:93-115.
  • 8Fila M. Boundedness of Global Solutions for the Heat Equation with Nonlinear Boundary Conditions [ J ]. Comm Math Univ Carolinae (S0010- 2628 ), 1989,300 : 479-484.
  • 9Levine H A. Some Nonexistence and Instability Theorems for Solutions of Formally Parabolic Equations of the form Put = - Au + F( u ) [J]. Arch Rational Mech Anal (S0003-9527) ,1973,51:371-386.
  • 10Levine H A, Smith R A. A Potential Well Theory for the Heat Equation with a Nonlinear Boundary Condition [ J ]. Math Meth Appl Sci ( S0170- 4214) ,1987, 9: 127-136.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部