期刊文献+

快速确定轮廓波消噪收敛因子

Fast Finding Shrinkage Factors for Contourlet Denoising
下载PDF
导出
摘要 轮廓波变换能够有效地快速逼近图像信号,在图像消噪方面优于小波消噪.为了更好地保留图像消噪后图像的纹理信息和边界特征,一般采用硬阈值的消噪方法.本文分析了目前存在的3种硬阈值确定方法速度较慢的原因,通过较小样本图像确定每个子带的3σ或4σ收敛因子,在保持消噪效果(峰值信噪比和视觉效果)的同时,极大地提高了阈值确定速度,并大大减小了确定收敛因子所需的内存空间. Contourlet transform can fast approximate to image signals efficiently, and its ability of image denoising is superior to that of wavelet. In order to retain borders character and texture information well in recovered image, hard threshold approach is often adopted. In this paper, we analyzed three different threshold methods and gave the reason that it is slow to find shrinkage factors. 3σ or 4σ shrinkage factors found through smaller sample images can improve the speed of finding threshold factors and reduce the memory required the shrinkage factors, meanwhile keep the denoising result not only in PSNR and visual quality.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2008年第4期577-579,共3页 Journal of Xinyang Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(60572048)
关键词 轮廓波消噪 收敛因子 蒙特卡罗法 冲激响应法 随机噪声法 样本图像 contourlet transform shrinkage factors Mento Carlo method impulse response method random noise method sample image
  • 相关文献

参考文献6

  • 1Do M N, Vetterli M. The Coatourlet Transform: an Efficient Directional Multiresolution Image Representation[ J]. IEEE Transactions on Image Processing ( S1057-7149), 2005, 14(12) :2091-2106.
  • 2Cunha A L, Zhou J, Do M N. The Nonsubsampled Contourlet Transform: Theory, Design, and Applications[J]. IEEE Transactions on Image Processing ( S1057-7149), 2006,15 (10) : 3089-3101.
  • 3李艳灵,郭建涛,陈新武.轮廓波消噪中滤波器的选择[J].信阳师范学院学报(自然科学版),2007,20(4):518-520. 被引量:3
  • 4Do M N. Contourlet Toolbox[ EB/OL]. (2005-12.06) [ 2008-03-05 ]. http ://www. mathworks.com/matlabcentral.
  • 5Lu Y, Do M N. A New Contourlet Transform with Sharp Frequency Localization[ C ]//Proc of IEEE International Conference on Image Processing, Atlanta, USA, 2006:8-11.
  • 6Chen X W, Liu W, Tian J W et al. Subbands Threshold Effect Factors and Second Version Contourlet Transform Based Image Denoising Method [ C]//SPIE Fifth International Symposium on Multispectral Image Processing and Pattern Recognition. Washington, USA:SPIE.

二级参考文献7

  • 1MALLAT S.A Wavelet Tour of Signal Processing[M].Orlando:Academic Press,1999.
  • 2PENNEC E L,MALLAT S.Sparse Geometric Image Representation with Bandelets[J].IEEE Trans Image Processing (S1057-7149),2005,14(4):423-438.
  • 3CANDES E J,DONOHO D L.New Tight Frames of Curvelets and Optimal Representations of Objects with Piecewise C Singularities[J].Commun.Pure Appl Math(S 0010-3640),2004,57(2):219-266.
  • 4DO M N,VETTERLI M.The Contourlet Transform:an Efficient Directional Multiresolution Image Representation[J].IEEE Transactions on Image Processing (S1057-7149),2005,14 (12):2091-2106.
  • 5BURT P J,ADELSON E H.The Laplacian Pyramid as a Compact Image Code[J].IEEE Trans.Commun.(S0096-2244),1983,31(4):532-540.
  • 6BAMBERGER R H,SMITH M.A filter bank for the directional decomposition of images:Theory and design[J].IEEE Trans on Signal PROC (S1053-587X),1992,40(4):882-893.
  • 7LU Y,DO M N.A New Contourlet Transform with Sharp Frequency Localization[C]//Proc of IEEE International Conference on Image Processing,Atlanta,USA,2006:8-11.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部