期刊文献+

基于局部统计特性的滤波算法 被引量:2

A New Filter based on Local Statistical Characteristics
下载PDF
导出
摘要 提出一种基于局部统计特性的新的滤波算法,可用于去除图像中混合噪音(高斯噪音和一致脉冲噪音),称之为线性局部混合噪音滤波器(简记为LLMF).该滤波器有机地结合了局部滤波算法和线性滤波算法,它采用局部邻域偏差判断像素的相似性,从而提高了对高斯成分的去噪能力.对纯高斯、纯脉冲以及它们的混合噪音都有较好的去噪效果.从实验结果可见,使用LLMF滤波器,图像的视觉效果、峰值信噪比、均方误差均优于同类混合滤波器. A new filtering algorithm is proposed based on local statistical characteristics in this paper, and it is called Linear Local Mixed Filter (LLMF) which is suitable for digital images corrupted with mixed noises ( impulse noise and Gaussian noise). The filter combine local filtering algorithm with linear filtering algorithm. It uses local neighborhood deviation to judge similarity of pixel and thus increased the performances of removed Gaussian components. Its denoising results are better to Gaussian pure, pure impulse noise and their mixture. Clearly, It excelled some similar filters in terms of image vision effects, the peak signal to noise ratio, the mean square errors after using LLMF by experiments.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2008年第4期597-600,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 河南省教育厅科技计划项目(2006520011)
关键词 混合噪音 滤波器 去噪 线性算子 mixed noise filter denoise linear arithmetic operators
  • 相关文献

参考文献6

  • 1蔡靖,杨晋生,丁润涛.模糊加权均值滤波器[J].中国图象图形学报(A辑),2000,5(1):52-56. 被引量:43
  • 2郭晓新,卢奕南,许志闻,王云霄,庞云阶.自适应定向加权中值滤波[J].吉林大学学报(理学版),2005,43(4):494-498. 被引量:11
  • 3关新平,赵立兴,唐英干.图像去噪混合滤波方法[J].中国图象图形学报(A辑),2005,10(3):332-337. 被引量:110
  • 4Abreu E, Lightstone M , Mitra S K,et al.A New Effwient Approach for the Removal of Impulse Noise flora Highly Corrupted Images[ J]. IEEE Trans Image Processing ( S1057-7149), 1996, 5 (10) : 1012-1025.
  • 5Garnett R, Huegerich T, Chui C, et at. A Universal Noise Removal Algorizhra with an Impulse Detector[J]. IEEE Transactions on Image cessing (SI057-7149) ,2005, 14( 11 ) : 1747-1754.
  • 6John I. Fast Noise Variante Estimation[J]. Computer Vision and Image Understanding (S1077-3142), 1996, 64(2) : 300-302.

二级参考文献25

  • 1郭晓新,卢奕南,许志闻,王云霄,庞云阶.荧光造影图像序列的噪声滤波[J].吉林大学学报(理学版),2005,43(3):348-353. 被引量:3
  • 2Pitas I, Venetsanopoulos A N. Nonlinear digital filters: Principles and applications[M]. Kluwer Academic Publishers, January 1990.(ISBN-0-7923-9049-0 ), also reprinted in Taiwan of China, 1993:416.
  • 3Lee Y H. Generalized median filtering and related nonlinear filtering technique[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33 (3) :672 ~ 683.
  • 4Kaoru Arakawa. Median filter based on fuzzy rules and its application to image restoration[J]. Fuzzy Sets and Systems, 1996,77:3 ~ 13.
  • 5Arce G R, Gallagher N C. State Description for the Root Signal Set of Median Filters [J]. IEEE Trans Acoust, Speech, Signal Processing, 1982, 30: 894-902.
  • 6Wendt P D, Coyle E J, Gallagher N C. Stack Filters [J]. IEEE Trans Acoust, Speech, Signal Processing, 1986, 34: 898-911.
  • 7Maragos P A, Schafer R W. Morphological Filters-part II [J]. IEEE Trans Acoust, Speech, Signal Processing, 1987, 35(8): 1170-1184.
  • 8Lee Y H, Kassam S A. Generalized Median Filtering and Related Nonlinear Filtering Techniques [J]. IEEE Trans Acoust, Speech, Signal Processing, 1985, 33(3): 672-683.
  • 9Bovik A C, Huang T S, Munson D C. A Generalization of Median Filters Using Linear Combination of Order Statistics [J]. IEEE Trans Acoust, Speech, Signal Processing, 1983, 31(6): 1342-1350.
  • 10Kotropoulos C, Pitas I. Constrained Adaptive LMS L-filters [J]. Signal Processing, 1992, 26(3): 335-358.

共引文献157

同被引文献19

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部