期刊文献+

基于多层隐类贝叶斯网络的舰船生存能力评估模型研究 被引量:3

Evaluation model of ship viability based on Hierarchical Latent Class of Bayesian networks
下载PDF
导出
摘要 生存能力是舰船设计时需要考虑的一个重要性能指标,然而其涉及的因素较多,因素之间的关系错综复杂,不确定信息充斥其间.在系统分析舰船生存能力评估要素的基础上,针对评估过程中的不确定性信息难以量化处理的特点,引入基于贝叶斯网络的多层隐类模型算法对舰船生存能力进行评估,给出了模型评分原理.最后以实例说明了建模方法与评估过程,并结合专家意见分析了模型的优劣,说明该多层隐类模型的算法符合实际情况. The ship viability is an very important capability index in the process of design. Whereas the assessment factors it involve are so many that this paper makes ship survivity and its assessment process analyzed completely and according to the characteristic of uncertainty information in the assessment process, the Bayesian Networks method based on Hierarchical Latent Class models is presented and the principle of marking for models is given on. In the last, a practical example is given to illustrate the process of estimating, and the grade of model is analysed based on experts' opinions to illustrate the rationality of the method.
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2008年第4期7-11,共5页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国防预研基金资助项目(9140A000106JB11)
关键词 舰船生存能力 多层隐类结构模型 贝叶斯网络 ship viability Hierarchical Latent Class models Bayesian networks
  • 相关文献

参考文献8

  • 1[1]Annati.What if a ship's survivability depends on many factors[J].Naval Force,2003,(3):11-13.
  • 2[3]Zhang N L.Hierarchical latent class models for cluster analysis[J].Jounal of Machine Learning Research,2004,5(6):698-721.
  • 3[4]Zhang N L,Kocka T.Effective dimensions of hierarchical latent class models[J].Jounal of Artificial Intelligence Research,2004,21:1-16.
  • 4[5]Lanterman A D.Schwarz,Wallace,and Rissanen:interview themes in theories of model selection[J].International Statistical Review,2001,69:167-254.
  • 5[6]Lauritzen S L.The EM algorithm for graphical association models with missing data[J].Computational Statistics and Data Analysis,1995,19(2):182-209.
  • 6[7]McLachlan G,Krishnan T.The EM algorithm and extensions[M].New York:John Wiley & SonsInc.Publishers,1997.
  • 7[8]Raftery A.Bayesian model selection in social research[J].Sociological Methodology,1995,25:112-193.
  • 8[10]Cooper G F,Herskovits E.A Basian method for the induction of probabilistic networks from data[J].Machine Learning,1992,9(4):309-346.

同被引文献19

  • 1李旭升,郭耀煌.基于贝叶斯网络分类的个人信用评估模型[J].统计与决策,2006,22(20):13-15. 被引量:11
  • 2William K, Mohammad M. A historical overview of probabilistic risk assessment development and its use in the nuclear power industry: a tribute to the late Professor Norman Carl Rasmussen [ J ]. Reliability Engineering and System Safety, 2005, 89:271-285.
  • 3Woo S J, Sang H H, Jaejoo H. A fast BDI) algorithm for large coherent fault trees analysis [ J ]. Reliability Engineering and System Safety, 2004,83:369 -374.
  • 4Hu L, Wang J, Wang S, et al. Preliminary probabilistic safety assessment of Chinese dual functional lithium lead test blanket module for ITER [ C ]//22nd IEEE/NPSS Symposium on Fusion Engineering 2007. Albuquerque, New Mexico : [ s. n. ] ,2007 : 17 - 21.
  • 5Zhang N L. Hierarchical latent class models for cluster analysis [ J ]. Jounal of Machine Learning Research, 2004, 5(6): 698-721.
  • 6Wall I B, Haugh J J, Woiuege D H. Recent application of PSA for managing nuclear power plant safety [ J ]. Progress in Nuclear Energy, 2001 ( 3/4 ).
  • 7Lu Chenguang , Pu Jinyun. Design on marine diesel engine intelligent risk emergency management system[ C]// New Perspectives on Risk Analysis and Crisis Response. [ S. l. ]: Atlantis Press,2009.
  • 8Hannaman G W, Spurgin A J, Lukic Y. Human cognitive reliability model for PRA analysis[ R]. NUS4531:Electric Power Research Institute, 1984.
  • 9Lu Chenguang , Pu Jinyun. Human-caused risk analysis in ship grounding accident. [ C ]// New Perspectives on Risk Analysis and Crisis Response. [ S. l. ] : Atlantis Press, 2009.
  • 10Pierre L B. Human reliability fata, htrran error mad accident models-illustration though the three mile island accident Analysis [ J ]. Reliability Engineering & System Safety,2004(83) :143 - 157.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部