期刊文献+

基于相关系数的雷达高分辨距离像分帧方法 被引量:8

A Frame Segmentation Method for Radar HRRPs Based on Correlation Coefficient
下载PDF
导出
摘要 高分辨距离像(HRRP)的方位敏感性造成HRRP数据是很长的统计特性连续变化的序列。从HRRP序列的统计特性出发,提出一种基于相关系数的HRRP分帧方法。外场实测数据的分帧结果表明,该方法可准确划分HRRP统计特性的变化,分帧结果与实际飞行轨迹符合;且采用时域模板匹配法(TMM)、谱域最短距离分类器和支撑向量机(SVM)分类器的识别结果均表明,相比目前基于散射点模型的均匀分帧方法,本文方法可有效提高识别率。 Target-aspect sensitivity makes High Resolution Range Profiles (HRRP) become a long sequence with statistical characteristic changing continuously. A novel frame segmentation method based on correlation coefficient is presented according to the statistical characteristic changes of HRRP sequence. Experimental results for measured data show that the presented method can exactly divide the statistical characteristic changes of HRRPs and the resulting frames are coincident with flying trajectory. Template Matching Method (TMM) classifier in time domain, shortest distance classifier and Support Vector Machine (SVM) classifier in frequency domain are used to evaluate recognition performances. Comparing with the current uniform frame segmentation method based on scattering center model, the presented method efficiently improves the recognition rates.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第9期2060-2064,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60574039 60371044)资助课题
关键词 雷达自动目标识别 相关系数 方位敏感性 高分辨距离像 Radar Automatic Target Recognition (RATR) Correlation coefficient Target-aspect sensitivity High Resolution Range Profile (HRRP)
  • 相关文献

参考文献8

  • 1Webb A R. Gamma mixture models for target recognition. Pattern Recognition, 2000, 33(12): 2045-2054.
  • 2Copsey K and Webb A R. Bayesian Gamma mixture model approach to radar target recognition. IEEE Trans. on AES, 2003, 39(4): 1201-1217.
  • 3Jacobs S P and O'sollivan J A. Automatic target recognition using high-resolution radar range profiles. [Ph.D.], St. Louis: Washington University, 1999.
  • 4Van der Heiden R and Groen F C A. The box-cox metric for nearest neighbour classification improvement. Pattern Recognition, 1997, 30(2): 273-279.
  • 5Xing Mengdao and Bao Zheng. The properties of range profiles of aircraft. Chinese Journal of Electronics, 2002, 11(1): 1-6.
  • 6Rothwell E J, Cheng K M, and Nyquist D P. An adaptive-window-width short time Fourier transform for visualization of radar target substructure resonances. IEEE Trans. on Antenna and Propagation, 1998, 46(9): 1393-1395.
  • 7Zyweck A and Bogner R E. Radar target classification of commercial aircraft. IEEE Trans. on AES, 1996, 32(2): 598-606.
  • 8杜兰,刘宏伟,保铮,张军英.一种利用目标雷达高分辨距离像幅度起伏特性的特征提取新方法[J].电子学报,2005,33(3):411-415. 被引量:14

二级参考文献6

  • 1杜兰 保铮 邢孟道.飞机目标的雷达一维距离像特性研究.西安电子科技大学学报,2001,28(1):14-19.
  • 2Li H-J,Yang S-H.Using range profiles as features vectors to identify aerospace objects[J].IEEE Trans A P,1993,41(3):261-268.
  • 3Xing M-D,Bao Z,Pei B.The properties of high-resolution range profiles[J].Optical Engineering,2002,41(2):493-504.
  • 4Jacobs S P.Automatic target recognition using high-resolution radar range profiles[D].Washington:Washington University,1999.
  • 5Marques de Sa J P.Pattern Recognition Concepts,Methods and Applications[M].New York:Springer,2001.
  • 6Steinberg B D.Microwave imaging with large antenna arrays: radio camera principle and technique[M].New York:John Wiley and Sons,1983.

共引文献13

同被引文献71

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部