期刊文献+

非线性系统中状态和参数联合估计的双重粒子滤波方法 被引量:11

A Dual Particle Filter for State and Parameter Estimation in Nonlinear System
下载PDF
导出
摘要 该文提出了一种双重粒子滤波方法,对存在未知参数的非线性系统进行状态和参数联合估计。该方法采用基于充分统计量的粒子滤波技术,避免了重采样过程中的粒子枯竭现象;采用贝塔分布拟合系统参数的后验分布,不仅充分利用了先验信息,而且避免了对高斯分布拖尾部分的采样,提高了粒子的采样效率。仿真实验结果表明,该方法提高了非线性系统中状态和参数的估计精度,降低了滤波器对初始误差的敏感性。 The dual particle filter is proposed to solve the problem of simultaneously estimating the state and the parameter of a nonlinear dynamic system. In the new filter, the sufficient statistics based particle filter is adopted to deal with sampling impoverishment arising in generic particle filter and the beta distribution, which makes good use of the prior knowledge as well as avoids tail draws for the parameter, is used to fit the parametric a posteriori probability density function. Simulation results show that both estimation accuracy and initial sensitivity of the nonlinear system are improved.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第9期2128-2133,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60772161,60372082) 教育部跨世纪优秀人才基金资助课题
关键词 粒子滤波 双重估计 充分统计量 贝塔分布 非线性系统 Particle filtering Dual estimation Sufficient statistics Beta distribution Nonlinear system
  • 相关文献

参考文献21

  • 1Kalman R. A new approach to linear filtering and prediction problem. Trans. of the ASME-Journal of Basic Engineering, 1960, 82(D): 34-45.
  • 2Jazwinski A H. Stochastic Processes and Filtering Theory. New York: Academic press, 1970: 281-286.
  • 3Dempster A P, Laird N M, and Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, Series B, 39(1): 1-38.
  • 4Goodwin G C and Aguero J C. Approximate EM algorithms for parameter and state estimation in nonlinear stochastic models. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005. Seville, Spain, 2005: 368-373.
  • 5Lange K A. Gradient algorithm locally equivalent to the EM algorithm. Journal of the Royal Statistical Society, 1995, Series B, 59(2): 425-437.
  • 6Berzuini C and Best N G, et al.. Dynamic conditional independence models and Markov chain Monte Carlo methods. Journal of the American Statistical Association, 1997, 92(440): 1403-1441.
  • 7Gordon N, Salmond D, and Smith A F M. Novel approach to nonlinear and non-Gaussian Bayesian state estimation. IEE Proceedings-F, 1993, 140(2): 107-113.
  • 8Liu J and West M. Combined parameter and state estimation in simulation-based filtering, in Sequential Monte Carlo in Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds. New York: Springer-Verlag, 2001: 197-223.
  • 9Storvik G. Particle filters in state space models with the presence of unknown static parameters. IEEE Trans. on Signal Processing, 2002, 50(2): 281-289.
  • 10Wan E A and Nelson A T. Dual extended Kalman filter methods, in Kalman Filtering and Neural Networks, S. Haykin, Eds. New York: John Wiley and Sons, Inc., 2001: 123-173.

同被引文献137

引证文献11

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部