摘要
设R为结合环,Z(R)为其中心。证明了:设R为半质环,a∈R,2a为非零因子,正整数n=n(x,y)及M,其中1<n=n(x,y)≤M.如果x,y∈R有依赖于x,y的多项式fxy(X,Y)∈A[X,Y]使得[fxy(x,a),yn]∈Z(R),则R为交换环。推广了文献[1-4]中的结果,得到更广泛的交换性条件。
Suppose R is an associative ring,Z(R) is its center. It is shown that: Suppose R is a semi -prime ring,α∈R, and 2α is not zero -divisor, n =n(x,y) and M are positive integers with 1 〈n =n(x,y) ≤M. If for everyx,y E R, there is a polynomialfxy( X, Y) ∈ A [X, Y] such that Efxy (x, α) ,yn] ∈Z(R), then R is called a commuta- tive ring. The results of documents [ 1 - 4] are extended and more extensive commutativity conditions of the semi - prime ring are obtained.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2008年第4期449-451,共3页
Journal of Natural Science of Heilongjiang University
基金
黑龙江省教育厅科研项目(10551283)
黑龙江科技学院引进人才科研启动基金项目(04-25)
关键词
半质环
非零因子
交换性
semi - prime ring
nonzero factor
commutativity