期刊文献+

短期负荷预测Volterra滤波器间隔采样模型 被引量:2

Interval Sampling Short-Term Load Forecasting Model Based on Volterra Filters
下载PDF
导出
摘要 针对现有Volterra滤波器模型按混沌轨道逐点训练的模式易发生训练不充分或过拟合现象并最终影响短期负荷预测效果的问题,提出了依据相空间邻近轨道演化相似性特点,建立基于高阶非线性Volterra滤波器(HONFIR)的短期负荷预测多步预测模型(MSF-HONFIR)。通过定义距离相似度、趋势相似度来衡量轨道演化相似性,提出了负荷吸引子邻近轨道判别的新方法。在MSF-HONFIR模型基础上将原始负荷序列分解为多个子序列并分别对各个子序列建立预测模型,显著削弱了系统累积误差。短期负荷预测仿真结果表明MSF-HONFIR模型的多步预测性能优于原有HONFIR模型。 To avoid the disadvantage of the existing Volterra filters model, which prediction performance are easily affected because the point-by-point training pattern along the chaotic orbit are prone to inadequate training or over training, the short-term electrical load multi-step-forecasting model (MSF-HONFIR) based on the higher-order nonlinear Volterra filter(HONFIR) is first constructed on account of the similarity of the evolve tendency of the neighbor orbits in this paper. Then the method of choosing neighbor orbits in the phase space is presented by considering the Euclidean distance and the evolve tendency. In addition, the original load data is divided into several sub-series and the MSF-HONFIR is then applied to the sub-series, by which the system accumulation error is greatly decreased. The simulation results of practical load forecasting demonstrate that the performances are improved compared to the HONFIR method.
出处 《电工技术学报》 EI CSCD 北大核心 2008年第8期114-120,共7页 Transactions of China Electrotechnical Society
基金 国家重点基础研究发展计划(973)(2004CB217902) 浙江省重大科技攻关计划(2007C11098)资助项目
关键词 短期负荷预测 Volterra滤波器模型 相空间邻近轨道 间隔采样 Short-term load forecasting, Volterra filter model, neighbor orbits in phase space, interval sampling
  • 相关文献

参考文献14

  • 1Arango H G, Souza de A C Z, Lambert Torres G, et al. Difference between regular and deterministic chaos processes based on time analysis of load: An example using CEMIG data[J]. Electric Power Systems Research, 2000, 56(1): 35-41.
  • 2Hippert H S, Pedreira C E, Souza R C. Neural networks for short-term load forecasting: A review and evaluation[J]. IEEE Trans on Power Systems, 2001, 16(1): 44-55.
  • 3Chen B J, Chang M W, Lin C J. Load forecasting using support vector machines: A study on EUNITE competition 2001[J]. IEEE Transactions on Power Systems, 2004, 19(4): 1821-1830.
  • 4Jiang, Chuanwen, Li Tao. Forecasting method study on chaotic dimension[J] load series Energy Con with high embedded version and Management,2005, 46(5): 667-676.
  • 5张家树,肖先赐.混沌时间序列的Volterra自适应预测[J].物理学报,2000,49(3):403-408. 被引量:149
  • 6Doyle III F J, Pearson R K, Ogunnaike B A, Identification and control using volterra models[M]. Springer-Verlag, London, 2002.
  • 7Mirri D, dynamic Volterra 9-21 Iuculano G, Traverso P A, et al. Non-linear system modelling based on modified series approaches[J]. Measurement, 2003(33)
  • 8张家树,肖先赐.混沌时间序列的自适应高阶非线性滤波预测[J].物理学报,2000,49(7):1221-1227. 被引量:61
  • 9Farmer J D, Sidorowich J J. Predicting chaotic time series[J]. Physics Review Letters, 1987, 59(8): 845-848.
  • 10Andrew M Fraser, Harry L Swinney. Independent coordinates for strange attractors from mutual information[J]. Physical Review A, 1986, 33(2): 1134-1140.

二级参考文献42

共引文献284

同被引文献32

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部