摘要
本文通过T-模建立的一类模糊神经网络推广了max-min神经网络。对于给定的模糊模式对(X1,Y1),…,(Xp,Yp),我们得到了这类网络能够存储这族模糊模式对的充分条件和必要条件。并将所讨论的方法应用于一类带阈值的max-min神经网络,证明了这类网络能够存储给定的一族模糊模式对的等价条件。最后用实例验证了我们的结论。
In this paper, we generalize max-min neural networks by constructing a class of fuzzy neural networks with T-norm. For given fuzzy pattern pairs (X 1,Y 1), …,(X p,Y p),we obtain sufficient conditions and necessary conditions which the family of given fuzzy pattern pairs can be stored in the fuzzy neural networks. With the same method, we study the max-min neural networks with thresholds. The equivalent conditions which the family can be stored in the max-min neural networks are shown. Finally, we give examples to illustrate our conclusions.
出处
《系统工程与电子技术》
EI
CSCD
1997年第11期54-58,共5页
Systems Engineering and Electronics
基金
国防科技预研基金
国防科技大学试验技术研究经费
关键词
算法
神经网络
模糊联想记忆
Associative space, T-norm, T-norm neural network, Max-min neural network with threshold.