期刊文献+

有限策略型博弈中的相关策略与具有合约的博弈及其均衡 被引量:2

The Correlated Strategy and Game With Contract and Equilibria in the Games of Finitely Strategic Form
下载PDF
导出
摘要 在Myerson介绍相关策略和具有合约的博弈的基础上,给出有限策略型博弈中相关策略、具有合约的博弈、最小化最大值、期望支付配置集和满足个人理性的期望支付配置集等定义,技术性地得出它们的一些性质;利用刘宗谦给出的混合策略性质及其记号,说明了相关策略与策略组合、内含签约的均衡与Nash均衡之间的关系,并提供其理论上的证明,得出操作的方法.并通过例子说明论文中的一些结果,验证了Fudenberg和Tir-ile所得出的相应结论. The definitions of correlated strategy, game with contract, minimax value, the allocation set of expectation pay- ment and one which satisfies the individual-rationality etc. were given, in the games of finitely strategic form through the concepts of correlated strategy and game with contract that is based on Myerson. Some properties or characteristics for these concepts were technically obtained. Using the properties in mixed strategies and the notation given by Liu Zong qian, the relations of correlated strategies and mixed strategies, equilibrium with contract and Nash equilibrium were explanationed and proved theoretically. The methods of operating them were obtained. Then some outcomes were showed by examples, and the corresponding result given by Fudenberg and Tirole were examined.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期33-38,共6页 Journal of Nanjing Normal University(Natural Science Edition)
关键词 相关策略 合约 配置 均衡 correlated strategy, contract, allocation, equilibrium
  • 相关文献

参考文献14

  • 1Binmore K.博弈论基础(1992)[M]//[法]J—J.拉丰,编.经济理论的进展.王国成,译.北京:中国社会科学出版社,2001.
  • 2Aumann R J. Subjectivity and correlation in randomized strategies[ J ]. Journal of Mathematical Economics, 1974,1:67-96.
  • 3Aumann R J. Agreeing to disagree[J]. Annals of Statistics, 1976, 4:1 236-1 239.
  • 4Aumann R J. Correlated equilibria as an expression of bayesian rationality[ J ]. Econometrica, 1987, 55:1-18.
  • 5Myerson R. Bayesian equilibrium and incentive compatibility [ M ]//Hurwicz L, Schmeidler D, Sonnenschein H. Social Goal and Social Organization. Cambridge: Cambridge University Press, 1985: 229-259.
  • 6Myerson R.博弈论:矛盾冲突分析(1991)[M].于寅,费剑平,译.北京:中国经济出版社,2001.
  • 7刘宗谦.混合策略中性质和均衡[J].数学的实践与认识,2004,34(9):164-170. 被引量:7
  • 8Liu Zongqian. The properties and equilibrium in mixed strategies [ J ]. The Proceedings of the China Association for Science and Technology, 2006,2(2) :35-45.
  • 9Fudenberg D,Tirole J.博弈论(1991)[M].姚洋,校,黄涛,郭凯,译.北京:中国人民大学出版社,2002.
  • 10Schelling T. The Strategy of Conflict[ M ]. Cambridge, Mass : Harvard University Press, 1960.

二级参考文献7

  • 1凯莱J L.一般拓扑学[M].吴从炘、吴让泉译,蒲保明等校,科学出版社,1985.
  • 2Ichiishi T. Game Theory for Economic Analysis[M]. Academic Press,1983.
  • 3拉丰J J.经济理论的进展(上)[M].王国成,黄涛,易成容等译,中国社会科学出版社,2001.
  • 4迈尔森R B.博弈论:矛盾冲突分析[M].于寅、费剑平译,中国经济出版社,2001.
  • 5Harsanyi J C. Game with randomly disturbed payoffs:A new rationale for mixed-strategy equilibrium Points[J].International Journal of Game Theory, 1973,2: 1-23.
  • 6Aumann R J. Subjective and correlation in randomized strategies[J]. Journal of Mathematical Economics, 1974,1 : 67-96.
  • 7刘宗谦,曹定爱.工作搜寻博弈[J].数量经济技术经济研究,2001,18(9):45-48. 被引量:9

共引文献8

同被引文献25

  • 1Contreras J, Klusch M, Krawczyk J B. Numerical solutions to Nash-Coumot equilibria in coupled constraint electricity markets [J]. IEEE Transaction on Power Systems, 2004, 19( 1 ) :195-206.
  • 2Facehinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems [ M ]. Berlin: Springer Ver- lag, 2003.
  • 3Zhang J Z, Qu B, Xiu N H. Some projection-like methods for the generalized Nash equilibria [ J ]. Computational Optimization and Applications, 2010, 45 ( 1 ) :89-109.
  • 4Panicucci P,Pappalardo M, Passacantando M. On solving generalized Nash equilibrium problems via optimization[ J ]. Opti- mization Letters, 2009, 3 (3) :419-435.
  • 5Sun W Y,Yuan Y X. Optimization Theory and Methods: Nonlinear Programming[ M]. New York: Springer, 2006.
  • 6Zhu T, Yu Z G. A simple proof for some important properties of the projection mapping [ J ]. Mathematical Inequalities and Applications, 2004, 7 ( 3 ) :453-456.
  • 7Han D R, Lo H K. Two new self-adaptive projection methods for variational inequality problems [ J ]. Computers and Mathe- matics with Applications, 2002, 43 (12) :1 529-1 537.
  • 8He B S, He X Z, Liu H X, et al. Self-adaptive projection method for co-coercive variational inequalities[ J]. European Journal of Operational Research, 2009, 196( 1 ) :43-48.
  • 9Harker P. Generalized Nash games and quasi-variationalinequalities [ J ]. Eur J Oper Res, 1991,54 ( 1 ) : 81-94.
  • 10Zhang J Z, Qu B, Xiu N H. Some projection-like methods for the generalized Nash equilibria[ J ]. Comput Optim Appl,2010, 45( 1 ) :89-109.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部