期刊文献+

带随机波动率的Lévy模型下美式看涨期权的定价 被引量:1

Pricing of American Call Option Under Lévy Model With Stochastic Volatility
下载PDF
导出
摘要 期权定价是现代金融理论的重要内容之一.期权的价格通常与标的资产价格的波动率等因素有关.B-S模型中假设波动率为常数,而实际上波动率往往是一个随机过程.本文研究带随机波动率的Lévy模型下美式看涨期权的定价问题,得到了美式看涨期权的最优执行时间以及期权价格满足的偏微分方程. Option pricing is one of the important contents in the modem theory of finance. Option price is related to the volatility of underlying assets. In the B-S model, volatility is assumed as a constant, but in reality, it is often seemed as a random process. In this paper, the pricing of American call option under Lévy model with stochastic volatility was discussed. The optimal exercising time of American call option and the partial differential equation of the value function of the option were obtained.
作者 丁玲 杨纪龙
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期48-53,共6页 Journal of Nanjing Normal University(Natural Science Edition)
关键词 美式期权 随机波动率 LÉVY模型 期权定价 American option,stochastic volatility, Lévy model, option pricing
  • 相关文献

参考文献8

  • 1Wiggins J B. Option values under stochastic volatility:Theory and empirical estimates [ J ]. Journal of Financial Economics, 1987, 19: 351-372.
  • 2Hull J, White A. The pricing of options on assets with stochastic volatility [ J ]. The Journal of Finance, 1987, 42 : 281-300.
  • 3Hull J, White A. An analysis of the bias in option pricing with stochastic volatility[ J]. Adv Futures Opt Res, 1988, 3: 29- 61.
  • 4Heston S L. A closed-form solution for options with stochastic volatility with applications to bond and currency options [ J ]. The Review of Financial Studies, 1993, 6 : 327-343.
  • 5Fouque J P, Papanicolaou G, Sipcar K R. Derivatives in Financial Markets with Stochastic Volatility[ M ]. Cambridge: Cambridge University Press, 2000.
  • 6Masaaki Otaka. Study on option pricing in an incomplete market with stochastic volatility based on risk premium analysis [ J]. Mathematical and Computer Modelling, 2003,38:1 399-1 408.
  • 7陈萍,杨孝平.有随机波动率及定期分红和配股时美式看涨期权的定价[J].应用概率统计,2005,21(1):81-87. 被引量:1
  • 8David Applebaum. Levy Processes and Stochastic Calculus[ M]. Cambridge: Cambridge University Press, 2004.

二级参考文献11

  • 1Kwok, Y K. Mathematical Models of Financial Derivatives, Springer-Verlag Singapore, 1998.
  • 2Blattberg, R C and Gonedes N J. A Comparison of the stable and student distributions as statistical models for stock prices, J. Business, 47(1974), 244-280.
  • 3Scott, L O. Option pricing when the variance changes randomly: theory, estimation and an application, J. Financial Quant. Annl., 22(1987), 419-438.
  • 4Johnson, H and Shanno, D. Option pricing when the variance is changing, J. Financial Quant.Annl., 22(1987), 143-151.
  • 5Hull, J and White, A. The pricing of options on assets with stochastic volatility, J Finance, 42(1987),281-300.
  • 6Hull, J and White, A. An analysis of the bias in option pricing with stochastic volatility, Adv Futures Opt Res, 3(1988), 29-61.
  • 7Fouque, J P, Papanicolaou G, Sipcar K R. Derivatives in Financial Markets with Stochastic Volatility, Cambridge University, 2000.
  • 8Bernt, K. Stochastic Differential Equations, An Introduction with Applications, Fourth edition,Springer-Verlag, 1995.
  • 9Karazas, I and Shreve, S. Matheds of Mathematical Finance, Berlin: Springer-Verlag, 1998.
  • 10Ei Karoui and Quenez, M. Dynamic programming and pricing of contingent claims in an incomplete market, SIAM J. Control and Optimization, 33(1995), 29-66.

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部