期刊文献+

线性相位紧支撑二元正交小波滤波器的构造

Construction of Compactly Supported Bivariate of Orthogonal Wavelet Filter With Linear Phase
下载PDF
导出
摘要 高维小波是处理多维信号的有力工具,张量积和栅格结构的小波有其自身的特点,但在实际应用中,仍需要构造小波滤波器来满足特定情形下的需要以提高滤波的效果,线性相位的正交小波滤波器是小波应用于工程中一个非常重要的特性。文献[6]给出了构造二元一次中心对称仿酉矩阵的方法,在此基础上,构造了具有线性相位的紧支撑二元正交低通滤波器及对应的小波滤波器,并给出了例子。 Mutlivariate wavelets are a powerful tool for multidimension signal processing. Wavelets filters constructed by tensor product or lattice structure have their own features. In application, to improve the effect of filtering, to constructing wavelet filter meeting some special requirements is still needed, Orthogonal wavelet filter banks with linear phase is a very important property in application of wavelets filters. In reference [ 6 ], the way of constructing centralsymmetric paraunitary matrix (each element is a bivariate polynomial of order one ) is given, and on this basis, compactly supported bivariate of orthogonal lowpass filter with linear phase and corresponding wavelet filters are constructed and one example is also given.
出处 《北京联合大学学报》 CAS 2008年第3期75-77,共3页 Journal of Beijing Union University
关键词 仿酉矩阵 滤波器 小波 paraunitary matrix tilter wavelet
  • 相关文献

参考文献6

  • 1Peng S L. Construction of two-dimensional compactly supported orthogonal wavelet filter with linear phase [ J ]. Acta Mathematica Sinica, English Sieries, 2002, 18(4) : 1 - 8.
  • 2Peng S L. N dimensional finite wavelet filter[ J]. Journal of computational marhematics, 2003,21 (5) :595 - 602.
  • 3Zhou J, Do M N, Kovacevic J. Special paraunitary matrices, eayley transform and multidimensional orthogonal filter banks [ J ]. IEEE Transactions on Image Processing, 2006,15 (2) : 511 - 519.
  • 4He Wenjie, Lai Mingjun, Example of bivariate nonseperable compactly supported orthonormal continuous wavelet [ J ]. IEEE Transactions on Image Processing IV, 2000,9 (5) : 949 - 953.
  • 5李林杉,彭思龙.基于仿酉矩阵的紧支撑二元正交小波滤波器组的构造[J].计算数学,2006,28(3):309-320. 被引量:4
  • 6李林杉,彭思龙,曾庆黎,侯文宇.中心对称仿酉矩阵的研究[J].数学的实践与认识,2006,36(3):288-291. 被引量:2

二级参考文献10

  • 1Wenjie He, Mingjun Lai. Example of bivariate nonseperable compactly supported orthonormal continuous wavelet[J]. Proceeding of SPIE, 1997, 3169: 303-314.
  • 2Peng S L. Construction of two-dimensional compactly supported orthogonal wavelet filter With linear phase[J].Acta Mathematica Sinica, English Sieries, 2002, 18(4): 1-8.
  • 3Peng S L, N dimensional finite wavelet filter[J]. Journal of Computational Marhematics, 2003, 21(5): 595-602.
  • 4Zhou J, Do M N, Kovacevic j. Special paraunitary matrices, cayley transform and multidimensional orthogonal filter banks[j]. IEEE Tran on Image Processing, 2006, 15(2): 511-519.
  • 5S.L Peng, Construction of two-dimensional compactly supported orthogonal wavelet filter With linear phase, Acta Mathematica Sinica, English Series, 18:4 (2002), 1-8.
  • 6S.L. Peng, N dimensional finite wavelet filter, Journal of Computational Mathematics, 21:5(2003), 595-602.
  • 7J. Kovacevic and M. Vtterli, Nonseparable multidimensional perfect reconstrction filter banks and wavelet bases for Rn, IEEE Tran. on Information Theory, 38:2 (1992), 533-555.
  • 8Wenjie He and Mingjun Lai, Example of Bivaxiate Nonseperable Compactly Supported Orthonormal Continuous Wavelet Applications in Signal and Image Processing IV, Proceeding of SPIE, 3169 (1997), 303-314.
  • 9J. Zhou, M.N. Do, and J. Kovacevic, Special paraunitary matrices, Cayley transform, and multidimensional orthogonal filter banks, IEEE Tran. on Image Processing, 15:2 (2006),511-519.
  • 10许以超,线性代数于矩阵论,高教出版社,1992.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部