期刊文献+

运用上环理论解释弱Hopf代数

Weak Hopf Algebras Explained by Corings
下载PDF
导出
摘要 弱双代数和弱Hopf代数是通常的双代数和Hopf代数的推广:定义的公理不变,但是余单位的乘法和单位的余乘法变得更弱一些了。将上环理论及其Galois理论运用于弱Hopf代数,得到弱Hopf代数的相应结果。对其对偶的情形进行了一定的研究,弱Hopf代数是有限广群代数的对偶。 Weak bialgebras and Hopf algebras are generalizations of ordinary bialgebras and Hopf algebras in the following sense: The defining axioms are the same, but the multiplicativity of the counit and comuhiplicativity of the unit are replaced by weaker axioms. The aim of this note is to develop the theory of corings and Galois theory for Hopf algebras. The dual situation where the weak Hopf algebra is the dual of a finite groupoid algebra is discussed.
作者 余永奇
出处 《安徽工业大学学报(自然科学版)》 CAS 2008年第4期448-450,共3页 Journal of Anhui University of Technology(Natural Science)
关键词 上环 弱HOPF代数 广群 伴随函子 coring weak Hopf algebras groupoid adjoint funtors
  • 相关文献

参考文献5

  • 1Sweedler M E. The predual theorem to the Jacoboson-Bourbaki theorem[J]. Trans Amer Math Soc,1975, 213:391-406.
  • 2Takeuchi M. Morita theorems for categories of comodules[J]. Fac Sci Univ Tokyo Sect IA Math,1977,24:629-644.
  • 3Caenepeel S, De Groot E. Galois theory for weak Hopf algebras[J]. Math, 2000,267:31-54.
  • 4Gomez-Torrecillas J.Separable functors in corings[J]. Int J Math Sci, 2002,30(4):203-225.
  • 5B hm G, Szlaehanyi K. Weak Hopf algebras(Ⅱ). Representation theory, dimentions, and the Markov trace[J]. J. Algebra, 2000, 233: 156-212.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部