期刊文献+

边界积分方程法求解目标的声散射T矩阵 被引量:3

Computing T matrix of sound scattering by object using the boundary integral equation method
下载PDF
导出
摘要 提出了计算任意表面形状刚性边界目标散射的基于边界积分方程的T矩阵方法(TMM-BIE)。利用Helmholtz积分方程法(HIEM)计算目标表面声场,替代扩展边界法(EBCM)计算中对目标表面声场的近似处理,解决了扩展边界法不能计算任意形状目标的散射T矩阵问题。文中计算了刚性边界的球目标、有限长圆柱目标以及非对称的三维散射体——猫眼(cat's-eye)模型的散射指向性和T矩阵。通过与解析解和HIEM结果比较,证明该方法的有效性。 A T matrix method based on the boundary integral equation (TMM-BIE) is presented for calculating sound scattering by an arbitrary shape rigid object. In this method, the Helmholtz integral equation method (HIEM) is used to calculate the sound pressure on the surface of object instead of the superposition form of basis functions on the surface in the extended boundary condition method (EBCM). The problems in calculating T matrix of large aspect ratios and arbitrary shape object by EBCM are solved. The method is proved by comparison of the calculation results of this method and theoretical results or HIEM to calculate the scattering by a rigid sphere, a rigid finite-cylinder, a cat's-eye structure.
作者 高华 徐海亭
出处 《声学学报》 EI CSCD 北大核心 2008年第5期396-401,共6页 Acta Acustica
关键词 边界积分方程法 T矩阵方法 声散射 求解 表面声场 三维散射体 有限长圆柱 目标散射 Aspect ratio Boundary conditions Boundary integral equations Matrix algebra Scattering
  • 相关文献

参考文献12

  • 1Waterman P C. New formulation of acoustic scattering. J. Acoust. Soc. Am., 1969; 45(6): 1417--1429.
  • 2Waterman P C. Symmetry, unitarity and geometry in electromagnetic scattering. Phys. Rev., 1971; D3:825--839.
  • 3Tolocman W. Comparison of the T-matrix and Helmholtz integral equation methods for wave scattering calculations. J. Acoust. Soc. Am., 1985; 77(2): 369-374.
  • 4Hackman R H. The transition matrix for acoustic and elastic wave scattering in prolate spheroidal coordinates. J. Acoust. Soc. Am., 1984; 75(1): 35--45.
  • 5Hackman R H. An application of the spheroidal coordinate based T-matirx. J. Acoust. Soc. Am., 1985; 78(3): 1058--1071.
  • 6Koopmann G H, Benner H. Method for computing the sound power of machines based on the Helmholtz integral. d. Acoust. Soc. Am., 1982; 71(1): 78--89.
  • 7Tobocman W. Calculation of Acoustic Wave Scattering by Means of the Helmholtz Integral Equation. J. Acoust. Soc. Am., 1984; 76(2): 599--607.
  • 8Giordano J A, Koopmann G H. State space boundary element-finite element coupling for fluid-structure interaction analysis. J. Acoust. Soc. Am., 1995; 98(1): 363--372.
  • 9徐海亭,涂哲民.积分方程法与求解谐振频率的声散射[J].声学学报,1995,20(1):26-32. 被引量:9
  • 10范军,卓琳凯.水下目标回波特性计算的图形声学方法[J].声学学报,2006,31(6):511-516. 被引量:29

二级参考文献17

共引文献42

同被引文献45

  • 1万琳,范军,汤渭霖.海底掩埋物的目标强度和回声信混比[J].声学学报,2006,31(2):151-157. 被引量:17
  • 2范军,卓琳凯.水下目标回波特性计算的图形声学方法[J].声学学报,2006,31(6):511-516. 被引量:29
  • 3Ratilal P, Makris N C. Extinction theorem for object scattering in a stratified medium. J. Acoust. Soc. Am., 2001; 110(6): 2924-2945.
  • 4Sarkissian A, Guammond C F, Dragonette L R. T-matrix implementation of forward scattering from rigid structures. J. Acoust. Soc. Am., 1993; 94(6): 3448-3453.
  • 5Song H, Kuperman W A, Hodgkiss W S, Akal T, Guerrini P. Demonstration of a high-frequency acoustic barrier with a time-reversal mirror. IEEE J. Ocean. Eng., 2003; 28: 246-249.
  • 6Snyder G R. Development of a system for acoustic measurements of bistatic target strengths. Thesis of Naval postgraduate school, 1988.
  • 7Rapids B R, Lauchle G C. Vertor intensity field scattered by a regid prolate spheroid. J. Acoust. Soc. Am., 2006; 120(1): 38-48.
  • 8WANG Shuozhong. Finite-Difference Time-Domain approach to underwater acoustics scattering problems. J. Acoust. Soc. Am., 1996; 99(4): 1924-1931.
  • 9Gsell D, Leutenegger T, Dual J. Modeling three- dimensional elastic wave propagation in circular cylindrical structures using a finite-difference approach. J..Acoust. Soc. Am., 2004; 116(6): 3284-3293.
  • 10Basaran E, Boliikbas D, Akgiin S, Aksoy S. Finite Difference Time Domain Method as a validation tool of transmission loss calculation for layered underwater acoustic environments. UDT-2008, 2B2.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部