期刊文献+

声速不均匀介质热声成像的声场仿真 被引量:2

Sound field simulation for thermoacoustic tomography with acoustic speed heterogeneity
下载PDF
导出
摘要 为了精确表示声速不均匀介质热声成像的声场,提出了一种时域有限差分(FDTD)仿真方法。先用FDTD将热声成像的基本方程离散化,给出描述热声成像的离散差分方程;再对电磁波脉冲进行两次修正,以消除高频电磁波引入的计算误差。计算机仿真研究的结果表明:当介质声速不均匀时,FDTD仿真方法其准确度高于目前常用的飞行时间法。在仿真实验条件下,当介质的声速差异大于50%时,FDTD法的误差比飞行时间法小十倍以上。可见,FDTD方法是一种有效的热声成像声场仿真方法,可以为声速不均匀介质热声成像算法的研究提供理论基础。 A finite-difference time-domain (FDTD) method is proposed to exactly calculate the sound field of the thermoacoustic tomography (TAT) with the inhomogeneous acoustic speed. Firstly, the basic equations of the TAT are discretized to differential equations by the FDTD. Then the electromagnetic pulse is modified twice in the simulation process in order to eliminate the error introduced by high frequency electromagnetic waves. It is shown by computer simulation results that the FDTD method has better accuracy than the time-of-flight method, which is in the common use, in the TAT with the inhomogeneous acoustic speed. When the acoustic speed difference is larger than 50%, the error of the FDTD method is ten times smaller than that of the time-of-flight method under the simulation condition. Therefore, this FDTD method is an efficient one for the sound field simulation of the TAT and can provide the theoretical basis for reconstruction algorithms of the TAT with the acoustic speed heterogeneity.
作者 张弛 汪源源
出处 《声学学报》 EI CSCD 北大核心 2008年第5期430-436,共7页 Acta Acustica
基金 国家重点基础研究规划基金(2006CB705707) 国家自然科学基金(30570488) 上海市重点学科建设项目(B112)
关键词 不均匀介质 声场仿真 声成像 声速 离散差分方程 FDTD法 高频电磁波 飞行时间法 Acoustic field measurement Acoustic fields Acoustic wave velocity Acoustics Computational methods Computer networks Computer simulation Diagnostic radiography Difference equations Differential equations Differentiation (calculus) Electromagnetic pulse Electromagnetic waves Finite difference method Medical imaging Method of moments Negative ions Nuclear explosions Photoacoustic effect Speed Tomography
  • 相关文献

参考文献23

  • 1Zhang H, Maslov K, Stoica Get al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechno., 2006; 24(7): 848-851.
  • 2Niederhauser J, Jaeger M, Lemor R et al. Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo. IEEE Trans. Med. Imaging, 2005; 24(4): 436--440.
  • 3Wei C, Huang S, Wang C et al. Photoacoustic flow measurements based on wash-in analysis of gold nanorods. IEEE Trans. Ultrason. Ferroeleet., Freq. Contr., 2007; 54(6): 1131--1141.
  • 4Li M, Schwartz J, Wang J et al. In vivo Imaging of nanoshell extravasation from solid tumor vasculature by photoacoustic microscopy. In: Proc. SPIE. 2007; 6437: 64370B-1-7.
  • 5Kolkman R, Hondebrink E, Steenbergen Wet al. In vivo photoacoustic imaging of blood vessels using an extremenarrow aperture sensor. IEEE J. Sel. Top. Quantum Electron., 2003; 9(2): 343-346.
  • 6Wang X, Pang Y, Ku Get al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol., 2003; 21(7): 803--806.
  • 7Kruger R, Kiser W, Reinecke D et al. Thermoacoustic molecular imaging of small animals. Mol. Imaging, 2003; 2(2): 113--123.
  • 8Kruger R, Liu P, Fang Yet al. Photoacoustic ultrasound (PAUS)-reconstruction tomography. Med. Phys., 1995; 22(10): 1605--1609.
  • 9Xu M, Wang L. Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans. Med. Imaging, 2002; 21(7): 814--822.
  • 10Xu Y, Feng D, Wang L. Exact frequency-domain reconstruction for thermoacoustic tomography-I: planar geometry. IEEE Trans. Med. Imaging, 2002; 21(7): 823--828.

二级参考文献3

共引文献4

同被引文献40

  • 1孙宝申,沈建中.合成孔径聚焦超声成像(一)[J].应用声学,1993,12(3):43-48. 被引量:46
  • 2李双,陈克安.结构振动模态和声辐射模态之间的对应关系及其应用[J].声学学报,2007,32(2):171-177. 被引量:45
  • 3Yost W A, Popper A N, Fay R R. Auditory perception of sound sources. Springer, 2008.
  • 4Rocchesso D, Fontana F. The sounding object. Mondo Es- tremo Publishing, 2003.
  • 5McAdams S, Roussarie V, Chaigne A, Giordano B L. The psychomechanics of simulated sound sources: Mate- rim properties of impacted thin plates. J. Acoust. Soc. Am., 2010; 128(3): 14101-1413.
  • 6McAdams S, Chaigne A, Roussarie V. The psychomechan- ics of simulated sound sources: Material properties of im- pacted bars. J. Acoust. Soc. Am., 2004; 115(3): 1306 1320.
  • 7Giordano B L, McAdams S. Material identification of real impact sounds: Effects of size variation in steel, wood, and Plexiglas plates. J. Acoust. Soc. Am., 2006; 119(2): 1171-1181.
  • 8Ottaviani L, Roechesso D. Auditory perception of 3D size: Experiments with synthetic resonators. ACM Transac- tions on Applied Perception, 2004; 1(2): 118-129.
  • 9Lutfi R A. Auditory detection of hollowness. J. Acoust. Soc. Am., 2001; 110(2): 1010-1019.
  • 10Lutfi R A, Liu C J, Stoelinga C N J. Auditory discrimina- tion of force of impact. J. Acoust. Soc. Am., 2011; 129(4): 2104-2111.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部