摘要
基于页面聚类的推荐算法常被应用在个性化推荐系统中,但是很少考虑页面访问的顺序性。针对这种弊端,提出了一种新的路径相似度系数,同时在推荐算法中运用了关联规则,提高了推荐结果的准确性。
Recommendation algorithmic based on page clustering is often used in personalized recommendation systems, yet accessing order isn't considered in this algorithmic. To address this limitation, a new similarity coefficient is proposed. At the same time, associate rule is used in the recommendation algorithmic, which improves the accuracy of the recommended results.
出处
《计算机应用与软件》
CSCD
北大核心
2008年第9期15-16,48,共3页
Computer Applications and Software
基金
北京市自然科学基金项目(4052006)
关键词
页面聚类推荐算法
相似度
WEB使用挖掘
Recommendation algorithm on page clustering Similarity Web usage mining