期刊文献+

HOCl…HCOCl复合物的结构和电子性质(英文) 被引量:1

Structures and Electronic Properties of HOCl…HCOCl Complexes
下载PDF
导出
摘要 在DFT-B3LYP/6-311++G**水平上求得HOCl+HCOCl复合物势能面上的四种稳定构型(S1,S2,S3和S4).其中,在复合物S1和S3中,HOCl单体的5H原子作为质子供体,与HCOCl单体中作为质子受体的1O原子相互作用,形成红移氢键复合物;在复合物S4中,HOCl单体的7Cl原子作为质子供体,与HCOCl单体中作为质子受体的1O原子相互作用,形成红移卤键复合物;而在复合物S2中,同时存在2C—3H…6O蓝移氢键和4Cl…5O相互作用.在MP2/6-311++G**水平上计算的单体间的相互作用能考虑了基组重叠误差(BSSE)和零点振动能(ZPVE)校正,其值在-5.05与-14.76kJ·mol-1之间.采用自然键轨道理论(NBO)对两种单体间相互作用的本质进行了考查,并通过分子中原子理论(AIM)分析了复合物中氢键和卤键键鞍点处的电子密度拓扑性质. B3LYP/6-311++G^ * * and MP2/6-311++G^ * * calculations were used to analyze the interaction between hypochlorous acid (HOCl) and formyl chloride (HCOCl). The results showed that there were four equilibrium geometries (S1, S2, S3, and S4) optimized at B3LYP/6-311++G^ * * level, and all the equilibrium geometries were confirmed to be in stable states by analytical frequency calculations. Complexes S1 and S3 use the 5H atom of HOCl as proton donor and the terminal 10 atom of HCOCl as acceptor to form red shift hydrogen bond systems. However, the blue-shifted hydrogen bond (2C-3H…60) coexists with 4Cl…5O interaction in structures S2. As for S4, it uses the 7Ci atom of HOCl as proton donor and the terminal 10 atom of HCOCl as acceptor to form red shift halogen bond system. Interaction energies between monomers in the four complexes corrected with basis set superposition error (BSSE) and zero-point vibrational energy (ZPVE) lie in the range from -5.05 to -14.76 kJ·mol^-1 at MP2/6-311++G^ * * level. The natural bond orbital (NBO) and atoms in molecules (AIM) theories have also been applied to explain the structures and the properties of the complexes.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2008年第9期1625-1630,共6页 Acta Physico-Chimica Sinica
基金 甘肃省自然科学科学基金(07-08-12)资助
关键词 次氯酸 氯代甲醛 非共价相互作用 自然键轨道理论 分子中原子理论 Hypochlorous acid Formyl chloride Noncovalent interaction NBO theory AIM theory
  • 相关文献

参考文献48

  • 1Lans, M. C.; Spiertz, C.; Brouwer, A.; Koeman, J. H. Eur. J. Pharmacol., 1994, 270:129
  • 2Rablen, P. R.; Lockman, J. W.; Jorgensen, W. L. J. Phys. Chem. A, 1998, 102:3782
  • 3Cai, Z. L.; Reimers, J. R. J. Phys. Chem. A, 2002, 106:8769
  • 4Battistutta, R.; Mazzorana, M.; Sarno, S.; Kazimierczuk, Z.; Zanotti, G.; Pinna, L. A. Chem. Biol., 2005, 12:1211
  • 5Himmel, D. M.; Das, K.; Clark, A. D.; Hughes, S. H.; Benjahad, A. Oumouch, S.; Guillemont, J.; Coupa, S.; Poncelet, A.; Csoka, I.; Meyer, C.; Andries, K.; Nguyen, C. H.; Grierson, D. S.; Arnold, E. ,I. Med. Chem., 2005, 48:7582
  • 6Jiang, Y.; Alcaraz, A. A.; Chen, J. M.; Kobayashi, H.; Lu, Y. J.; Snyder, J. P. J. Med. Chem., 2006, 49:1891
  • 7Trogdon, G.; Murray, J. S.; Concha, M. C.; Politzer, P. J. Mol. Model., 2007, 13:313
  • 8Auffinger, P.; Hays, F. A.; Westhof, E.; Ho, P. S. Proc. Natl. Acad. Sci. USA, 2004, 101:16789
  • 9Takeuchi, T.; Minato, Y. J.; Takase, M.; Shinmori, H. Tetrahedron Lett., 2005, 46:9025
  • 10Xu, J. W.; Liu, X. M.; Ng, J. K. P.; Lin, T. T.; He, C. B. J. Mater. Chem., 2006, 16:3540

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部