期刊文献+

基于多特征的图像检索算法 被引量:2

Image retrieval algorithm based on multi-features
下载PDF
导出
摘要 基于内容的图像检索是数字图像处理的一个重要研究方向,有效地提取图像内容特征是其中的一个关键问题。提出利用最大相关最小距离将图像的纹理特征、高斯密度特征与人脸检测相结合的算法进行图像检索。在建立10 000幅图像库的基础上验证了算法的可行性,实验结果表明算法能够准确、高效地检索出目标图像;相对于单一特征的检索,算法有效地提高了图像检索的精度和速度。 Content-based image retrieval is an important research direction of digital image processing, and effective image extraction feature is one of the key issues. A new image retrieval method by using max correlation rain distance to combine together texture features, Gaussian density characteristics and face detection of images for image retrieval is presented. The establishment of 10 000 images to prove the feasibility of the algorithm, the experimental results show that algorithm can be accurately and efficiently retrieve target image. Compared to a single retrieval features algorithm that it improves effective image retrieval accuracy and speed.
作者 陈蔚 肖国强
出处 《计算机工程与设计》 CSCD 北大核心 2008年第17期4507-4510,共4页 Computer Engineering and Design
基金 重庆市科委自然科学基金项目(CSTC-2006BB2309)
关键词 基于内容的图像检索 高斯密度特征 纹理特征 人脸检测 最大相关最小距离 content-based image retrieval Gaussian density feature texture feature face detection max correlation rain distance
  • 相关文献

参考文献13

  • 1Smeulders A W M, Worring M, Santini S, et al. Content-based image retrievals at the end of the early years[J].IEEE Trans Pattern Anal Mach Intell,2000,22(12): 1349-1380.
  • 2Man junath B S.Color and texture descriptors[J].IEEE Trans on Circuits & Systems for Video Technology,2001,11(6):703-715.
  • 3Jing F, Li M, Zhang H J,et al. A unified framework for image retrieval using keyword and visual features[J].IEEE Transactions on Image Processing,2005,14(7):979-989.
  • 4Paul Viola,Michael Jones.Robust real-time face detection[J].International Journal of Computer Vision,2004,57(2): 137-154.
  • 5Zhao,Chellappa, Rosenfeld, et al. Face recognition:A literature survey[R].UMD CS-TR-4167,2000.
  • 6Wang Hualu, Chang Shih-Fu.A highly efficient system for automatic face region detection in MPEG video [J]. IEEE Transactions on Circuits and Systems for Video Technology,1997,7(4): 615-628.
  • 7叶永伟,杨庆华,应富强.基于小波和区域统计的纹理图象检索系统[J].浙江工学院学报,2003,31(3):306-309. 被引量:4
  • 8吴冬升,吴乐南,黄波.基于小波模糊聚类的均质纹理和非均质纹理图象检索[J].中国图象图形学报(A辑),2003,8(12):1400-1405. 被引量:9
  • 9何小海,藤奇志.图像通信[M].西安:西安电子科技大学出版,2006:107-114.
  • 10阮秋琦.数字图像处理[M].2版.北京:电子工业出版社,2005:367-473.

二级参考文献19

  • 1Niblack W, Barber R, Equiz W, et al. The QBIC project: querying images by content using color, texture and shape Research Report[R]. IBM Research Division, Almaden Research Center, 1993.
  • 2Pentland A, Picard R W, Sclaroff S. Photobook: tools for content-based manipulation of image databases (c) [J]. In :Proc Storage and Retrieval for Image and Video Databases Ⅱ, San Jose, 1 994 : 34- 47.
  • 3J Li J Z Wang,G Wirderhold. Classfication of textureed and non-textured images using region segmentation[C]. Procedding of the Seventh International Conference on Inage Processing, Vancouver B C Canda September, 2000.
  • 4Flickner M.Query by image and video content:The QBIC system[J].IEEE Computer,1995,28(9):23-32.
  • 5Manjunath B S.Color and texture descriptors[J].IEEE Trans on Circuits and Systems for Video Technology,2001,11 (6):703-715.
  • 6Feng G C,Jiang J.JPEG compressed image retrieval via statistical features[J].Pattern Recognition,2003,36(4):977-985.
  • 7Wang Liwei,Zhang Yan,Feng Jufu.On the euclidean distance of images[J].IEEE Transaction On Pattern Analysis And Machine Intelligence,2000,27(8):1334-1339.
  • 8Jinf F,Li M,Zhang H J.A unified framework for image retrieval using keyword and visual features[J].IEEE Transactions on Image Processing,2005,14(7)979-989.
  • 9Vasconcelos N,Lippman A.A multiresolution manifold distance for invariant image simijarity[J].IEEE Transactions on Multimedia,2005,7(1):127-142.
  • 10Kourous Jafari-Khouzani,Hamid Soltanian-Zadeh.Rotation-invariant multiresolution texture analysis using radon and wavelet transforms[J].IEEE Transaction On Image Processing,2005,14(6):223-231.

共引文献15

同被引文献2

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部