期刊文献+

中医证候的多元统计分析及方法研究 被引量:4

Research on Multivariate Analysis for Symptom Diagnosis in Traditional Chinese Medicine
下载PDF
导出
摘要 从"高脂血症及动脉粥样硬化痰瘀证候的蛋白质组学研究"的数据出发,研究影响中医证候的各主要因素。对11种可能的标志蛋白质(群)数据进行分析,以统计聚类为主导思想,给出变量聚类和样本数据聚类综合应用的方法,并结合医学角度对变量聚类结果的分析,指导组内和组间两种样本聚类讨论;同时,通过假设检验,从统计理论上对所得分类予以支持。最后得到标志蛋白质群{结合珠蛋白前体,α-胰蛋白酶抑制剂轻链,脂肪细胞脂质结合蛋白异构体3,补体C4}或{纤维蛋白原γ链,α-胰蛋白酶抑制剂轻链,未确定名称的蛋白(ID1485)}。考虑可能是区分高脂血症及动脉粥样硬化痰证和瘀证的标志蛋白质群,从而给出蛋白质水平上对痰证和瘀证判决方法的建议。 Based on the data from the project "Study on the Proteomics about Phlegm and Blood Stasis Symptom in Hyperlipidemia and Atherosclerosis", multivariate analysis are used to help find the most powerful protein groups for TCM symptom diagnosis. Clustering methods on both variables and samples are used to analyze the 11 proteins, and two possibilities for the variable clustering results are given from the TCM perspective to supervise the sample clustering in different ways. Moreover, hypothesis tests are introduced to support the classification independently. Either the protein group { Haptoglobin (Precursor), a-trypsin inhibitor light chain, ALB protein3, Complement component C4} or the protein group {Fibrinogen gamma chain, a-trypsin inhibitor light chain, undetermined protein (ID1485)} is found to excellently separate not only the symptoms and the control group, but also the phlegm and the blood stasis symptoms. Therefore, suggestions for better TCM symptom diagnosis are given out.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第5期669-675,共7页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 北京大学“校长基金” 教育部科学技术研究项目(106001)资助
关键词 中医证候 变量聚类 样本数据聚类 假设检验 判决方法 symptoms in Traditional Chinese Medicine variable clustering sample clustering hypothesis test symptom diagnosis
  • 相关文献

参考文献5

  • 1张志斌,王永炎.证候名称及分类研究的回顾与假设的提出[J].北京中医药大学学报,2003,26(2):1-5. 被引量:254
  • 2吴秀艳,王天芳.中医证候诊断标准的研究思路[J].新中医,2007,39(3):1-3. 被引量:37
  • 3白云静,申洪波,王乐,等.多元统计分析与中医证候规范化研究.中国科技论文在线(http://www.paper.edu.011).2007
  • 4Radespiel-Troger M, Rabenstein T, Schneider H T, et al. Comparison of tree-based methods for prognostic stratification of survival data. Artificial Intelligence in Medicine, 2003, 28 : 323-341
  • 5Zhang Heping, Singer B. Recursive Partitioning in the Health Sciences. New York: Springer-Verlag, 1999:7-19

二级参考文献18

共引文献287

同被引文献60

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部