期刊文献+

具阻尼项的“坏”的Boussinesq型方程的Cauchy问题(英文) 被引量:3

Cauchy Problem for the "Bad" Boussinesq-Type Equation with Damping Term
下载PDF
导出
摘要 研究一类具阻尼项的"坏"的Boussinesq型方程utt-uxx-2kuxxt-αuxxxx=β(un)xx的Cauchy问题,其中k,α为大于零的实数,β是实数,n≥2是整数。在关于初值的适当假设下,证明了Cauchy问题存在一个整体光滑解u∈C∞((0,T];H∞(R))∩C([0,T];H1(R))∩C1([0,T];H-1(R))对任何T>0。 Abstract The Cauehy problem for the "bad" Boussinesq-type equation with damping term uu - uxx - 2kuxxt - auxxx = β( u^n )xx is studied. Where k, α and β are real numbers, with k 〉 0, a 〉 0, and n≥ 2 is an integer. It proves that for any T 〉 0 the Cauchy problem admits a global smooth solution u∈C^∞((0,T];H^∞(R))∩C([0,T];H^1(R))∩C^1([0,T];H^-1(R)) under suitable assumptions on the initial data.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第5期676-682,共7页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 河南省自然科学基金资助项目(0611050500)
关键词 “坏”的Boussinesq型方程 CAUCHY问题 整体光滑解 "bad" Boussinesq-type equation Cauchy problem global smooth solution
  • 相关文献

参考文献17

  • 1Boussinesq J. Theorie des ondes et des remou qui se propagent le long d'un canal rectangulaire horizontal, en comuniquant au liquide contenu dans ce canal des vitesses sunsiblement pareilles de la surface au fond. J Math Pures Appl, 1872, 17(2): 55-108
  • 2Berryman J. Stability of solitary waves in shallow water. Phys Fluids, 1976, 19:771-777
  • 3Bona J L, Smith R A. A model for the two-way propagation of water waves in a channel. Math Proc Cambridge Philos Soc, 1976, 79:167-182
  • 4Linares F. Global existence of small solutions for a generalized Boussinesq equation. J Differential Equations, 1993, 106:257-293
  • 5Makhankov V G. Dynamics of classical solitons. Phys Rev Lett, 1978, 35(C): 1-128
  • 6Bona J L, Sachs R L. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Commun Math Phys, 1988, 118:15-19
  • 7Defrutos J, Ortega F, Sanz-Serna J M. Pseudospectral method for the "good" Boussinesq equation. Math Comp, 1991, 57:109-122
  • 8Chen Guowang, Yang Zhijian. Existence and non-existence of global solutions for a class of non-linear wave equation. Math Meth Appl Sci, 2000, 23:615-631
  • 9Pani A K, Sarange H. Finite element Galerkin method for the "good" Boussinesq equation. Nonlinear Anal TMA, 1997, 29:937-956
  • 10Sachs R L. On the blow-up of certain solutions of the "good" Boussinesq equation. Appl Anal, 1990, 36:145-152

同被引文献3

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部