期刊文献+

舰船组合导航系统的顺序滤波融合算法 被引量:3

Sequential Filtering Fusion Algorithm for Marine Integrated Navigation System
下载PDF
导出
摘要 舰船组合导航系统Kalman滤波的集中式融合与分布式融合方法存在滤波精度与计算性能、容错性不可兼顾的缺点。且船舶运动受海洋环境等的影响,其噪声基于白噪声建模过于理想化。针对上述问题,提出了舰船组合导航系统的顺序滤波融合算法。该算法的基本思想是采用一阶Markov过程建立舰船运动的噪声模型,并用状态扩维方法将状态方程转化为符合标准Kalman滤波的基本方程,然后每一时刻检查各导航子系统的有效性,对有效的导航子系统引入顺序滤波融合思想实现导航定位。与传统的顺序滤波融合算法相比,新算法在保留与集中式融合同样高的滤波精度、计算性能好的优点的基础上,新增了实用性强、容错性好的优点。理论分析和舰船SINS/GPS组合导航仿真结果表明了新算法的有效性和优越性。 Neither centralized fusion nor distributed fusion in marine integrated navigation system can have both high filtering precision and good computation performance fault--tolerance. Moreover, it is too idealized to model vessel process noise with white noise neglecting the impacts of marine environments on ship motions. For these problems, a sequential filtering fusion algorithm for marine integrated navigation system is presented. In the new algorithm vessel process noise is modeled with 1st order Markov process, the state equations are converted into the basic equations of standard Kalman filter with state dimension augmentation method, then the effectiveness of each sub navigation system is checked and fusions of all effective data are carried out step by step for positioning the vessel. Compared with traditional sequential filtering fusion algorithms, the new algorithm has the same filtering precision and good computation performance as the centralized fusion algorithm, with the additional advantage of practicability and better fault-tolerance. Theoretical analysis and simulation results of a vessel GPS/SINS integrated navigation system demonstrate the effectiveness and superiority of the new algorithm.
出处 《中国航海》 CSCD 北大核心 2008年第3期206-209,226,共5页 Navigation of China
基金 国家自然科学基金(60434020 60572051) 上海市教委重点项目(07ZZ102) 创新项目(08YZ109)
关键词 船舶、舰船工程 组合导航 集中式融合 分布式融合 容错性 顺序滤波融合 状态扩维 ship, naval engineering integrated navigation centralized fusion distributed fusion fault-tolerance sequential filtering fusion state dimension augmentation
  • 相关文献

参考文献7

二级参考文献25

  • 1钱华明,雷艳敏,谢常锁.组合导航系统几种滤波方法的分析比较及其性能评价[J].中国惯性技术学报,2006,14(6):95-99. 被引量:16
  • 2帅平,陈定昌,江涌.基于BP人工神经网络的GPS/SINS组合导航算法[J].现代防御技术,2004,32(5):43-48. 被引量:1
  • 3孙红岩,毛士艺.多传感器目标识别的数据融合[J].电子学报,1995,23(10):188-193. 被引量:26
  • 4高化猛,赵新国,李智.飞行器INS与GPS组合导航系统卡尔曼滤波[J].装备指挥技术学院学报,2007,18(1):59-62. 被引量:6
  • 5吴简彤 王建华.神经网络技术及其应用[M].哈尔滨:哈尔滨工程大学出版社,1997..
  • 6[3]孙枫,袁赣南,张晓红.组合导航系统[M].哈尔滨:哈尔滨工程大学出版社,1998.
  • 7X R Li.Comparison of two measurement fusion methods for Kalman-Filter-Based multisensor data fusion[J].IEEE Transactions on Aerospace and Electronic Systems,2001,37(1):273-280.
  • 8B S Rao,H F Durrant-Whyte.Fully decentralized algorithm for multisensor Kalman filtering[J].IEEE Proceedings-D,1991,138(5):413-420.
  • 9Lang Hong.Centralized and distributed multisensor integration with uncertainties in comunication networks[J].IEEE Transactions on Aerospace and Electronic Systems,1991,27(2):370-379.
  • 10Feng He, Lenan Wu. Sequential Dual Filter Based Smoothing Framework for Integrated Navigation Systems [J]. IEEE Instrumentation and Measurement Technology Conference 2007, 2007: 1-5.

共引文献46

同被引文献20

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部