期刊文献+

[Ca(NH_2)_2]_n(n=1~5)团簇的密度泛函理论研究 被引量:4

Density Functional Theory Study on [Ca(NH_2)_2]_n(n=1~5) Clusters
下载PDF
导出
摘要 用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G*基组水平上对[Ca(NH2)2]n(n=1~5)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的振动特性、成键特性、电荷特性等进行了理论研究.结果表明:团簇易形成环状结构,以金属Ca原子团簇作为骨架,NH2基结合在金属团簇骨架上,并主要是Ca—N成键和Ca—Ca成键.团簇中Ca—N键长为0.225~0.257nm,Ca—Ca键长为0.312~0.354nm,N—H键长为0.102~0.103nm,H—N—H键角为102.9°~104.2°;团簇中Ca原子的自然电荷在1.657e~1.720e之间,N原子的自然电荷在-1.543e~-1.592e之间,H原子的自然电荷在0.349e~0.367e之间,Ca原子和NH2基之间相互作用呈现较强的离子性;对比团簇和晶体的结构及IR谱表明,NH2基在团簇和晶体中的结构基本一致。 Possible geometrical structures and relative stabilities of [Ca(NH2)2]n (n= 1-5) clusters are studied by using the hybrid density functional theory (B3LYP) with 6-31G* basis sets. For the most stable isomers, electronic structures, vibrational properties, bonds properties, and ionization potentials are analyzed. The calculated results show that N--Ca and Ca--Ca bonds are favorable in the clusters, in which NH2 is bound to the framework of Ca atomic clusters forming ring-like structures. The bond lengths in [Ca(NH2)2]n (n=1-5) clusters are 0.225-0.257 nm for Ca-N, 0.312-0.354 nm for Ca--Ca, and 0.102-0.103 nm for N-H bonds, respectively. The bond angles of H-N-H are 102.9°-104.2°. The population analysis suggests that the bonds between Ca and NH2 are of strong ionicity. The natural charges are -1.543e--1.592e for N atoms, 1.657e- 1.720e for Ca atoms, and 0.349e-0.367e for H atom, respectively. The comparative study of structures and spectrum between clusters and crystal shows that the structure of NH2 in clusters is consistent with that in crystal.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2008年第18期2030-2036,共7页 Acta Chimica Sinica
基金 国家自然科学基金(Nos.10547007 10647006) 甘肃省自然科学基金(No.3ZS062-B25-022) 兰州理工大学优秀青年教师培养资助计划(No.Q200317)资助项目
关键词 [Ca(NH2)2]n(n=1~5)团簇 密度泛函理论 结构与性质 储氢材料 [Ca(NH2)2]n (n=1-5) clusters density functional theory structure and property hydrogen storage material
  • 相关文献

参考文献24

  • 1Chen, P.; Xiong, Z.; Luo, J. Nature 2002, 420, 302.
  • 2Leng, H. Y.; Ichikawa, T.; Hino, S. J. Power Sources 2006, 156, 166.
  • 3Hinchliffe, A. Chem. Phys. Lett. 1977, 45, 88.
  • 4Yoshino, M.; Komiya, K.; Takahashi, Y. J. Alloys Compd. 2005, 404-406, 185.
  • 5Armstrong, D. R.; Perkins, P. G.; Walker, G. T. J. Mol. Struct. ( Theochem ) 1985, 122, 189.
  • 6Burk, P.; Koppel, I. Int. J. Quantum Chem. 1994, 51,313.
  • 7Wurthwein, E. U.; Sen, K. D.; Pople, J. A. Inorg. Chem. 1983, 22, 496.
  • 8Velikokhatnyi, O. I.; Kumta, P. N. Mater. Sci. Eng. B 2007, 140, 114.
  • 9Tsumuraya, T.; Shishidou, T.; Oguchi, T. J. Alloys Compd. 2007, 446-447, 323.
  • 10Xiong, Z. T.; Wu, G. T.; Hu, J. J. J. Alloys Compd. 2007, 441, 152.

二级参考文献39

  • 1马文瑾,武海顺.Al_mN和Al_mN^+(m=2~9)团簇结构与稳定性的量子化学研究[J].化学学报,2004,62(18):1785-1793. 被引量:5
  • 2王广厚.团簇物理的新进展(Ⅰ)[J].物理学进展,1994,14(2):121-172. 被引量:101
  • 3VanZee,R.J.; Baumann,C.A.; Weltner,W.Jr.J.Chem.Phys.1981,74,6977.
  • 4VanZee,R.J.; Baumann,C.A.; Bhat,S.V.; Weltner,W.Jr.J.Chem.Phys.1982,76,5636.
  • 5Baumann,C.A.; VanZee,R.J.; Bhat,S.V.; Weltner,W.Jr.J.Chem.Phys.1983,78,190.
  • 6Nesbet,R.K.Phys.Rev.A 1964,135,460.
  • 7Harris,J.; Jones,R.O.J.Chem.Phys.1979,70,830.
  • 8Nayak,S.K.; Jena,P.Chem.Phys.Lett.1998,289,473.
  • 9Nayak,S.K.; Rao,B.K.; Jena,P.J.Phys.:Condens.Matter1998,10,10863.
  • 10Pederson,M.R.; Reuse,F.; Khanna,S.N.Phys.Rev.B1998,58,5632.

共引文献37

同被引文献60

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部