摘要
标准支持向量机(SVM)及其改进形式的最小二乘支持向量机(LS-SVM)基于结构风险最小化,成功解决了多项式模型在预测方面所面临的问题;文章首先从理论上分析了SVM模型比多项式回归模型在预测方面更具有优越性;具体实验结果表明,SVM模型预测精度高,抗干扰能力强,更适合在预测方面的应用。
The standard support vector machine(SVM) and its advanced form--the least squares support vector machine (LS-SVM) are based on the principle of structural risk minimization. The prediction model based on the LS-SVM can successfully solve the problems that the polynomial prediction moded encounters. The paper analyzes the superiority of the SVM model over the polynomial model theoretically. Experiment is also made. The experiment result shows that'the SVM model is more accurate and more robust in noise resistance, and thus more suitable for prediction.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第9期1481-1484,1493,共5页
Journal of Hefei University of Technology:Natural Science
基金
国家自然科学基金资助项目(70672096)
关键词
多项式模型
支持向量机
年发电量
polynomial model
support vector machine
annual power generation