期刊文献+

一类具p-Laplace算子边值问题解的存在性 被引量:1

Existence of solutions of a type of boundary value problems with p-Laplacain
下载PDF
导出
摘要 研究一类具p-Laplace算子的微分方程四点边值问题解的存在性.通过一个形式参数,将该问题间接地转化为一个等价的积分算子不动点问题.在非线性项有界、无界以及局部有界条件下,利用Schauder不动点定理分别得到了边值问题解存在的充分条件. The existence of solutions of a type of four-points boundary value problem of differential equations with p-Laplacain was studied and this problem was indirectly turned into integral operator fixed point problem in a parametric form. Sufficient conditions of the existence of solutions were obtained by using Schauder's fixed point theorem bounded and locally bounded, respectively. on condition that the non-linear term is bounded, un
作者 贾梅 刘锡平
出处 《上海理工大学学报》 EI CAS 北大核心 2008年第4期319-323,共5页 Journal of University of Shanghai For Science and Technology
基金 上海市教委科研项目资助(05EZ52)
关键词 P—Laplace算子 四点边值问题 SCHAUDER不动点定理 存在性 p-Laplacian operator four-points boundary value problem Schauder's fixed pointtheorem existence
  • 相关文献

参考文献6

  • 1GUPTA C P. A sharper condition for the Solvability of a three-point second order boundary value problem [J ]. J Math Anal Appl, 1997,205 (2) : 586 - 579.
  • 2刘锡平,贾梅,葛渭高.p-Laplace算子方程三点边值问题单调正解的存在性[J].吉林大学学报(理学版),2007,45(1):49-55. 被引量:10
  • 3GE Wei-gao , REN Jing-li. An extension of Mawhin' s continuation theorem and its application to boundary value problem with a p-Laplacain [J]. Nonlinear Analysis, 2004,58(3 - 4) :477 - 488.
  • 4GARCID-HUIDOBRO M, C P GUPTA MANASEVICH R, An m-point boundary value problem of Neumann type for a p-Laplacian like operator [J ]. Nonlinear Analysis, 2004,56(7):1 071- 1 089.
  • 5马德香,周翠莲.一类具有p-Laplacian算子的多点边值问题正解的存在性[J].山东理工大学学报(自然科学版),2005,19(3):10-14. 被引量:2
  • 6郭大钧.非线性泛函分析[M].济南:山东科学技术出版社,2002.193~194

二级参考文献12

  • 1翁世有,高海音,张晓颖,蒋达清.一维p-Laplacian奇异边值问题的存在性原则[J].吉林大学学报(理学版),2006,44(3):351-356. 被引量:4
  • 2郭大均.非线性泛函分析[M].济南:山东科学技术出版社,1985..
  • 3Ill' in V A, Moiseev E I. Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite fifference aspects[J]. Differential Equation, 1987, 23:803-810.
  • 4Gupta C P, Ntouyas S K, Ch P. Tsamatos. Solvability of an m-point boundary value problem for second order ordinarydifferential equation[J ]. J. Math. Anal. Appl., 1995,189: 576-584.
  • 5Ma R, Castaneda N. Existence of solutions fornonlinear m-point boundary value problem[J]. J. Math. Anal. Appl., 2001, 256: 556-567.
  • 6Bai Chuan-zhi, Fang Jin-xuan. Existence of multiple positive solutions for nonlinear m-point boundary value problems[J]. Appl. Math. Comput., 2003, 140: 297-305.
  • 7郭大钧.非线性泛函分析[M].济南:山东科学技术出版社,2002.193~194
  • 8LU Hai-shen, O' Began Donal, ZHONG Cheng-kui. Multiple Positive Solutions for the One-dimensinal Singular p-Laplacian [ J]. Applied Mathematics and Computation, 2002, 133 : 407-422.
  • 9CHEUNG Wing-sum, BEN Jing-li. On the Existence of Periodic. Solutions for p-Laplacian Generatized Lienard Equation[J]. Nonlinear Analysis, 2005, 60: 65-75.
  • 10Garcid-Huidobro M, Gupta C P, Manasevich R. An m-Point Boundary Value Problem of Neumann Type for a p-Laplaeian Like Operator [ J ]. Nonlinear Analysis, 2004, 56: 1071-1089.

共引文献39

同被引文献10

  • 1LIN T C,WEI J.Ground states of N coupled nonlinear Schr(o)dinger equations in Rn,n≠3[J].Comm.Math.Phys.,2005,255:629-653.
  • 2LIN T C,WEI J.Spikes in two coupled nonlinear Schr(o)dinger equations[J].Ann.Inst.H.Poincaré,Anal.Non Linéaire,2005,22:403-439.
  • 3HIOE F T,SALTER T S.Special set and solutions of coupled nonlinear Schr(o)dinger equations[J].J.Phys.A:Math.Gen.,2002,35:8 913-8 928.
  • 4WEI Gongming.Existence of least energy solutions to coupled elliptic systems with critical nonlinearities[J].Electronic Journal of Differential Equations,2008,49:1-8.
  • 5WEI Gongming.Existence and concentration of ground states of coupled nonlinear Schr(o)dinger equations[J].J.Math.Anal.Appl.,2007,332:846-862.
  • 6DANCER E N,DU Y H.Competing species equations with diffusion,large interactions,and jumping nonlinearities[J].J.Differential Equations,1994,114:434-475.
  • 7BOCCARDO Lucio.Some remarks on a system of quasilinear elliptic equations[J].Nonlinear Differ.Equ.Appl.,2002,9:309-323.
  • 8BERESTYCKI H,LIONS P L.Nonlinear scalar field equations I,Existence of a ground state[J].Arch.Rat.Mech.Anal.,1983,82:313-345.
  • 9CONTI M,TERRACINI S,VERZINI G.Nehari's problem and competing species systems.Un problème de nehari et les espèces en competition[J].Ann.I.H.Poincaré-AN19,2002,6:871-888.
  • 10宗良,贾梅,王河堂,戴忠华.具p-Laplace算子型边值问题解的存在性[J].上海理工大学学报,2008,30(1):11-14. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部