期刊文献+

摩擦市场下多阶段投资组合的均值方差模型 被引量:3

Optimal dynamic portfolio selection in a frictional market with mutiperiod mean-variance formulation
下载PDF
导出
摘要 研究税收、红利和新型交易成本下摩擦市场的多阶段均值-方差模型的投资组合问题.在允许卖空的情况下,以终端财富最大化为目标,通过建立辅助问题,利用逆序动态规划的求解方法,得到了各阶段的最优投资策略解析表达式,同时也得到了均值方差有效前沿的解析表达式. The problem of multiperiod portfolio selection was dealt with under the mean-variance formulation in a frictional market with tax, bonus and new transaction costs. Targeting at the maximization of terminal wealth, the analytical solution of the optimal portfolio policy in each period was achieved via the technique of constructing the auxiliary problems and utilizing the method of inverseorder-solving algorithm of dynamic programming. Meanwhile the analytical expression of the meanvariance efficient frontier was obtained.
作者 孙世杰 高岩
出处 《上海理工大学学报》 EI CAS 北大核心 2008年第4期339-344,共6页 Journal of University of Shanghai For Science and Technology
基金 上海市重点学科建设资助项目(T0502) 上海市科委基础重点研究资助项目(06JC14057)
关键词 多阶段投资组合 动态规划 均值-方差模型 multiperiod portfolio selection dynamic programming mean-variance formulation
  • 相关文献

参考文献5

  • 1MARKOWITZ H. Portfolio selection [J ]. The Journal of Finance, 1952,7 (1): 77 - 91.
  • 2LI D, CHANT F, NG W L. Safety-first dynamic portfolio selection [J]. Dynamics of Continuous, Discrete and Impulsive Systems, 1998,4(4) :585 - 600.
  • 3ZHOU X Y, LI D. Explicit efficient frontier of a continuous-time mean variance portfolio selection problem [C]// International Conference on Control of Distributed Parameter and Stochastic Systems, Kluwer: Boston, 1999: 323 - 330.
  • 4LI D, NG W L. Optimal dynamic portfolio selection: multiperiod mean-variance formulation [J]. Mathematical Finance,2000,10(3) :387 - 406.
  • 5ROBERT A S.投资组合管理[M],第3版.黄卉,周萌,白原,译.北京:清华大学出版社,2005:322-323.

同被引文献35

  • 1卫海英,邓玮.Markowitz均值—方差理论的局限及其在我国的适用性[J].南方金融,2004(10):30-32. 被引量:3
  • 2Markowitz.H.M.Portfolio[J].Journal of Finance,1952,(7).
  • 3Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, 3: 77-91.
  • 4Chen A H Y, Jen F C and Zionts S. The Optimal Portfolio Revision Policy[J]. Journal of Business, 1971, 44: 51-61.
  • 5I Li D and Ng W L. Optimal Dynamic Portfolio Selection: Multi-period Mean-variance Formulation[J]. Mathematical Finance, 2000, 10: 387-406.
  • 6Zhou X Y and Li D. Continuous-time Mean-variance Portfolio Selection: a Stochastic LQ Frame- work[J]. Applied Mathematics &: Optimization, 2000, 42: 19-33.
  • 7Yu Mei, Satoru Takahashi, Hiroshi Inoue, Wang Shouyang. Dynamic Portfolio Optimization with Risk Control for Absolute Deviation Model[J]. European Journal of Operational Research, 2010, 201: 349-364.
  • 8Harrison M and Kreps D. Martingales and Arbitrage in Multiperiod Securities Markets[J]. Journal of Economics Theory, 1979, 20: 381-408.
  • 9Harrison M and Pliska S. Martingales and Stochastic Integrals in the Theory of Continuous Trad- ing[J]. Stochastic Processes and Applications, 1981, 11: 215-260.
  • 10Pliska S. A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios[J]. Mathematics of Operations Research, 1986, 11: 371-382.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部