期刊文献+

用局部Petrov-Galerkin方法求解不可压超弹性材料问题

A MESHLESS LOCAL PETROV-GALERKIN METHOD FOR SOLVING INCOMPRESSIBLE HYPERELASTIC PROBLEMS
下载PDF
导出
摘要 用一种修正的无网格局部Petrov-Galerkin方法求解了不可压超弹性材料平面应力问题。在建立求解方程过程中,采用径向基函数耦合多项式构造近似函数,并以Heaviside分段函数作为加权函数简化了刚度矩阵的域积分,引入平面应力假设避免了材料不可压引起的数值求解困难。数值算例表明:该文方法求解不可压超弹性材料平面应力问题具有稳定性好、精度高的特点。 A modified meshless local Petrov-Galerkin (MLPG) method is presented for solving the plane stress problems of the incompressible hyperelastic materials. To develop the proposed method, trial functions are constructed using the radial basis function (RBF) coupled with a polynomial basis function when the governing equations are established, and a simple Heaviside test function is chosen to simplify the domain integral of the stiffness matrix in the MLPG method. Moreover, the plane stress hypothesis is employed to overcome the numerical difficulties induced by the incompressibility in the plane stress problems. Examples show that the proposed method possesses high stability and reasonable accuracy for solving the plane stress problems of the incompressible hyperelastic materials.
作者 张勇 胡德安
出处 《工程力学》 EI CSCD 北大核心 2008年第9期235-240,共6页 Engineering Mechanics
关键词 固体力学 超弹性材料 局部PETROV-GALERKIN方法 不可压 平面应力 solid mechanics hyperelastic material.s MLPG incompressibility plane stress
  • 相关文献

参考文献10

  • 1Atluri S N, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J].Computational Mechanics, 1998, 22(2): 117-- 127.
  • 2Lin H, Atluri S N. The meshless local Petrov-Galerkin (MLPG) method for solving incompressible Navier-stokes equations [J]. Computer Modeling in Engineering & Sciences, 2001, 2(2): 117--142.
  • 3Long S Y, Liu K Y,Hu D A. A new meshless method based on MLPG for elastic dynamic problems [J]. Engineering Analysis with Boundary Elements, 2006, 30: 43 --48.
  • 4龙述尧.弹性力学问题的局部Petrov-Galerkin方法[J].力学学报,2001,33(4):508-518. 被引量:72
  • 5Atluri S N, Shen S P. The meshless local Petrov-Galerkin (MLPG) method: A simple & less-costly alternative to the finite element and boundary element methods [J]. Computer Modeling in Engineering & Sciences, 2002,3(1): 11--51.
  • 6Xiao J R, McCarthy M A. A local Heaviside weighted meshless method for two-dimensional solids using radial basis functions [J]. Computational Mechanics, 2003, 31: 301 --315.
  • 7Hu D A, Long S Y, Liu K Y. A modified meshless local Petrov-Galerkin method to elasticity problems in computer modeling and simulation [J]. Engineering Analysis with Boundary Elements, 2006, 30: 399--404.
  • 8Liu G R. Meshfree methods: Moving beyond the finite element method [M]. New York: CRC Press, 2003.
  • 9Chen J S, Yoon S, Wang H E An improved reproducing kernel particle method for nearly incompressible t'mite elasticity [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 181: 117-- 145.
  • 10Rivlin R S, Saunders D W. Large elastic deformation of isotropic materials [M]. London: Philosophical Transactions of the Royal Society, 1951.

二级参考文献4

  • 1王龙甫.弹性理论[M].科学出版社,1979..
  • 2Atluri S N,Comput Mech,1998年,22卷,2期,117页
  • 3Belytschko T,Int J Num Meth Eng,1994年,37卷,229页
  • 4王龙甫,弹性理论,1979年

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部