期刊文献+

基于支持向量机的酒精发酵过程pH值辨识 被引量:2

Modeling for the pH variable in an Alcohol Fermentation Process Based on the Support Vector Machine
下载PDF
导出
摘要 由于酒精发酵中pH过程的复杂性和强非线性,建立能够描述其动态和静态特性的准确的数学模型是比较困难的。支持向量机(SVM)是近年来发展起来的一种基于统计学习理论,采用结构风险最小化的新型学习机器。将支持向量机应用到酒精发酵生产过程pH值的建模中,实验和仿真结果表明支持向量机模型是有效的,且具有良好的泛化性能,能够较好的解决酒精发酵过程中pH值的建模问题。最后进一步分析了参数选择对支持向量机模型性能的影响。 Due to the complexity and highly non-linearity of the pH variable inherent in the process of alcohol fermentation, it is rather difficult to derive an exact mathematical model capable of describing both the dynamic and static characteristics. The support vector machine (SVM) is a novel modeling method based on the statistical learning theory, which employs the principle of the structural minimization. In this paper, a modeling scheme based on the SVM is proposed for the pH variable in an alcohol fermentation process. Both simulations and experimental results show the effectiveness of the proposed approach based SVM. The obtained model shows good performance in model validation. On the other hand, the effect of the selection of the parameters for SVM on the performance of the modeling procedure is also discussed.
出处 《微计算机信息》 北大核心 2008年第28期313-314,298,共3页 Control & Automation
基金 国家自然科学基金资助(60572055)项目名称:含有非平滑非线性的三明治动态系统辨识与预测
关键词 PH 酒精发酵 支持向量机 模型 pH alcohol fermentation support vector machine model
  • 相关文献

参考文献5

二级参考文献9

共引文献2271

同被引文献62

  • 1李冲伟,丛丽娜,张小愚,李宪臻.BP神经网络在酒精发酵过程建模的应用[J].中国酿造,2006,25(7):44-47. 被引量:13
  • 2王博,葛旭萌,李宁,白凤武.自絮凝颗粒酵母乙醇连续发酵耦合酵母回用工艺的研究[J].生物工程学报,2006,22(5):816-820. 被引量:4
  • 3Thomas K C, Ingledew W M. Production of 21% (v/v) ethanol by fermentation of very high gravity (VHG) wheat mashes[J]. Journal of lndustrial Microbiology, 1992, 10(1).-61-68.
  • 4Sathaporn S, Maki F, Wang X H, et al. Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol[J]. Biomass and Bioenergy, 2009, 33(5): 390-398.
  • 5Voca N, Varga B, Kricka T, et al. Progress in ethanol production from corn kernel by applying cooking pre-treatment[J]. Bioresource Technology, 2009, 100(10): 2712-2718.
  • 6Rivera E C, CostaA C, Atala D I P, etal. Evaluation of optimization techniques for parameter estimation: Application to ethanol fermentation considering the effect of temperature[J]. Process Biochemistry, 2006, 41(7): 1682-1687.
  • 7Thomas K C, Hynes S H, Jones A M, et al. Production of fuel alcohol form wheat by VHG technology effect of sugar concentration and fermentation temperature[J]. Applied Biochemistry and Biotechnology, 1993, 43:211-227.
  • 8Aldiguier A S, Alfenore S, Cameleyre X, et al. Synergistic temperature and ethanol effect on Saccharomyces cerevisiae dynamic behavior in ethanol bio-fuel production[J]. Bioprocess Biosyst Eng., 2004, 26: 217-222.
  • 9Van den Brink J, Daran-Lapujade P, Pronk J T, et al. New insights into the Saccharomyces cerevisiae fermentation switch: Dynamic transcriptional response to anaerobicity and glucose-excess[J]. BMC Genomics, 2008, 100(9): 100.
  • 10Alfenore S, Cameleyre X L, Benbadis C, et al. Aeration strategy: A need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process[J]. Appl. Microbiol Biotechnol, 2004, 63: 537-542.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部