期刊文献+

代谢速率调控物种丰富度格局的研究进展

Advances of species richness regulated by the metabolic rate
下载PDF
导出
摘要 提出生物多样性分布格局的普适性理论和探索其内在形成机制一直是生态学家们研究的焦点之一。到目前为止,已有很多假说被用来解释生物多样性分布规律,但是这些假说的普适性均受到学者们的质疑。最新理论——代谢速率假说以能量相当法则和代谢分形分配网络模型为基础,定量预测了个体及种群生态进化动态过程与群落生物多样性分布格局之间的关系,以及物种丰富度和环境因子之间的关系。代谢速率假说解释了生物多样性的起源问题,也回答了生物多样性如何维持的问题。该文重点综述了代谢生物多样性理论的发展及其相关研究进展。通过和其他假说比较、分析,我们认为随着代谢理论假说的不断发展和完善,代谢生物多样性理论将更具有普适性。同时我们也提出了进一步完善该假说需要解决的一些科学问题。 A fascinating issue for ecologists is to develop a general theory exploring the mechanisms of formation and stabilization of biodiversity. Although diverse hypotheses have been proposed to account for the geographic distribution of biodiversity, many of them are not applicable to all species or under a variety of conditions. The metabolic rate hypothesis is a recently-developed hypothesis that can quantify relationships between the dynamic processes of individual and population evolution and patterns of biodiversity, and between species richness and environmental factors. This theory is based on the energetic-equivalence rule and fractal-like distribution network models, and can not only explain the origin of biodiversity but also the maintenance of biodiversity. Herein, we analyze and compare this new hypothesis to other related hypotheses of metabolism-biodiversity theory. We suggest that this hypothesis is more likely to become a unified theory explaining the formation of biological diversity than others we assessed. We also discuss important issues relevant to further advancing the area of metabolism-biodiversity theory.
出处 《生物多样性》 CAS CSCD 北大核心 2008年第5期437-445,共9页 Biodiversity Science
基金 国家自然科学基金(30730020和30430560) 国家863项目(2006AA100202)
关键词 生物多样性 代谢速率假说 物种丰富度 代谢理论 biodiversity, metabolic rate hypothesis, species richness, metabolic theory
  • 相关文献

参考文献78

  • 1Algar AC, Kerr JT, Currie DJ (2007) A test of metabolic theory as the mechanism underlying broad-scale species richness gradients. Global Ecology and Biogeography, 16, 170-178.
  • 2Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science, 297, 1545-1548.
  • 3Allen AP, Gillooly JF (2006) Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecology Letters, 9, 947-954.
  • 4Allen AP, Gillooly JF, Brown JH (2003) Response to comment on "Global biodiversity, biochemical kinetics and the energetic-equivalence rule". Science, 299, 346c.
  • 5Allen AP, Gillooly JF, Brown JH (2007) Recasting the Species-Energy Hypothesis: the Different Roles of Kinetic and Potential Energy in Regulating Biodiversity. Scaling biodiversity (eds Storch D, Marquet PA, Brown JH), pp. 283-299. Cambridge University Press, Cambridge, UK.
  • 6Allen AP, Gillooly JF, Savage VM, Brown JH (2006) Kinetic effects of temperature on rates of genetic divergence and speciation. Proceedings of the National Academy of Sciences, USA, 103, 9130-9135.
  • 7Anderson DR, Burnham KP (1994) AIC model selection in overdispersed capture-recapture data. Ecology, 75, 1780-1793.
  • 8Bai YF, Wu JG, Pan QM, Huang JH, Wang QB, Li FS, Buyantuyev A, Han XG (2007) Positive linear relationship between productivity and diversity: evidence from the Eurasian steppe. Journal of Applied Ecology, 44, 1023-1034.
  • 9Barraclough TG, Savolainen V (2001) Evolutionary rates and species diversity in flowering plants. Evolution, 55, 677~83.
  • 10Brayard A, Escarguel G, Bucher H (2005) Latitudinal gradient of taxonomic richness: combined outcome of temperature and geographic mid-domains effects? Journal of Zoological Systematics and Evolutionary Research, 43, 178-188.

二级参考文献18

共引文献195

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部