期刊文献+

网络风险评估方法研究 被引量:12

Research on methods of network risk evaluation
下载PDF
导出
摘要 为了进行网络风险评估,采用隐马尔可夫随机过程作为分析手段,以入侵检测系统的输出(报警事件)为处理对象,建立了描述主机系统受到攻击后状态转化的隐马尔可夫模型(HMM),给出了主机系统风险指数的计算方法,并经过简单叠加得到整个网络风险的定量评价。最后通过实验证实了所提出方法的有效性。 In order to evaluate the network risk, Hidden Markov random procedure was adopted as analysis means. The output of intrusion detection systems ( called alarm events) was used as the processed objects. The Hidden Markov Model (HMM) to describe the state transform of the attacked host system was constructed. The calculation method of the risk coefficient for host systems was given. The risk coefficients for host systems were simply added to obtain the quantitive evaluation of the risk for whole network. The experiments justify that the proposed method is effective.
作者 史志才
出处 《计算机应用》 CSCD 北大核心 2008年第10期2471-2473,2477,共4页 journal of Computer Applications
基金 上海工程技术大学科研基金项目(07-22)
关键词 网络安全 隐马尔可夫模型 风险评估 network security Hidden Markov Model (HMM) risk evaluation
  • 相关文献

参考文献6

  • 1冯登国,张阳,张玉清.信息安全风险评估综述[J].通信学报,2004,25(7):10-18. 被引量:308
  • 2马建平,余祥宣,洪帆,张江陵.基于角色的安全策略[J].计算机研究与发展,1998,35(5):447-450. 被引量:15
  • 3RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition[ J]. Proceedings of the IEEE, 1989,77(2) : 257-286.
  • 4CHO S B, PARK H J. Efficient anomaly detection by modeling privilege flows using hidden Markov model [ J]. Computers & Security, 2003,22(1): 44-55.
  • 5张响亮,王伟,管晓宏.基于隐马尔可夫模型的程序行为异常检测[J].西安交通大学学报,2005,39(10):1056-1059. 被引量:16
  • 6Lincoln Laboratory. Lincoln laboratory scenario (DDoS) 1.0 [ DB/ OL]. [ 2008 - 04 - 01 ]. http://www. ll. mit. edu/SST/ideval/data/2000/LLS_DDOS_1. 0. html.

二级参考文献12

  • 1贺岚,硕士学位论文,1996年
  • 2Forrest S, Hofmeyr S A, Somayaji A, et al. A sense of self for Unix processes [A]. 1996 IEEE Symposium on Security and Privacy, Oakland,USA, 1996.
  • 3Lee W, Stolfo S. Data mining approaches for intrusion detection [A]. 7th USENIX Security Symposium, Berkeley,USA, 1998.
  • 4Wang Wei, Guan Xiaohong, Zhang Xiangliang. Profiling program and user behaviors based on non-negative factorization for anomaly intrusion detection [A]. 43rd IEEE Conference on Control and Decision, Nassau, Bahamas,2004.
  • 5Wang Wei, Guan Xiaohong, Zhang Xiangliang. A Novel intrusion detection method based on principal component analysis in computer security [A]. International IEEE Symposium on Neural Networks, Dalian, China,2004.
  • 6Warrender C, Forrest S, Pearlmutter B. Detecting intrusions using system calls: alternative data models [A]. 1999 IEEE Symposium on Security and Privacy, Oakland, USA, 1999.
  • 7Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition [J]. Proceedings of the IEEE, 1989,77(2):257-289.
  • 8United States General Accounting Office, Accounting and Information Management Division. Information Security Risk Assessment[Z]. Augest 1999.
  • 9National Institute of Standards and Technology. Special Publications 800-30, Risk Management Guide(DRAFT)[Z]. June 2001.
  • 10BUTLER S A, FISCHBECK P. Multi-Attribute Risk Assessment, Technical Report CMD-CS-01-169[R]. December 2001.

共引文献336

同被引文献77

引证文献12

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部