期刊文献+

基于自适应粒子滤波的摄像机位姿估计方法 被引量:1

New camera pose estimation method based on adaptive particle filter
下载PDF
导出
摘要 提出一种基于自适应粒子滤波的摄像机位姿估计方法。该方法首先利用相邻两帧传递模型的噪声方差动态调整传递模型,接着利用内点统计方法计算粒子权值,在对权值作归一化运算之后,利用粒子加权和计算摄像机位置和姿态。实验结果表明该方法很大程度上提高了基于标识的摄像机位姿估计系统的健壮性与稳定性。 A new adaptive particle filter based camera pose estimation method was implemented. The noise variance between two adjacent 'frames to update the prediction model dynamically, and then interior points statistical method was used to calculate the weight. After normalizing the weight, the position and orientation of the camera were calculated. Experimental results show that this method improves the robustness and practicability of marker-based systems.
出处 《计算机应用》 CSCD 北大核心 2008年第10期2679-2682,共4页 journal of Computer Applications
关键词 自适应粒子滤波 摄像机位姿估计 计算机视觉 adapted particle filter camera pose estimation computer vision
  • 相关文献

参考文献14

  • 1OKUMA T, KURATA T, SAKAUE K. Fiducial - less 3 - D object tracking in ar systems based on the integration of top-down and bottom-up approaches and automatic database addition[ C]// ISMAR.[S. l. ]: IEEE, 2003:342 -343.
  • 2ZHANG X, FRONZ S, NAVAB N. Visual marker detection and decoding in AR systems: A comparative study[ C]//ISMAR. [ S. l.] : IEEE, 2002:97 - 106.
  • 3KOLLER D, KLINKER G, ROSE E, et al. Real-time vision-based camera tracking for augmented reality applications[ C]// ACM Virtual Reality Software and Technology. New York, NY, USA: ACM, 1997 : 87 - 94.
  • 4管涛,李利军,段利亚,王乘.基于标识与平面间单应性矩阵的虚实注册方法[J].华中科技大学学报(自然科学版),2006,34(10):55-57. 被引量:11
  • 5ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[ J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174- 188.
  • 6胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 7陈睿,刘国翌,赵国英,张俊,李华.基于序列蒙特卡罗方法的3D人体运动跟踪[J].计算机辅助设计与图形学学报,2005,17(1):85-92. 被引量:21
  • 8姜雪原,马广富,胡庆雷.基于粒子滤波和UKF联合滤波的卫星姿态估计[J].哈尔滨工业大学学报,2007,39(3):337-341. 被引量:10
  • 9ROSTEN E, DRUMMOND T. Fusing points and lines for high performance tracking[ C]// IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2005,2:1508 -1511.
  • 10ICHIMURA N. Stochastic filtering for motion trajectory in image sequences using a monte carlo filter with estimation of hyper-parameters[C]//ICPR. Washington, DC: IEEE Computer Society, 2002, 4:68 - 73.

二级参考文献47

  • 1王天树 郑南宁 李岩 等.用于人体运动合成的运动纹理模型[A]..第4届中国计算机图形学大会[C].北京,2002.40-50.
  • 2Isard M, Blake A. CONDENSATION-Conditional density propagation for visual tracking[J]. International Journal of Computer Vision, 1998, 29(1): 5~28.
  • 3Gavrila D, Davis L. 3-D model based tracking of humans in action: A multiview approach[A]. In: IEEE Proceedings of International Conference on Computer Vision and Pattern Recognition, San Francisco, California, 1996. 73~80.
  • 4Wren C, Pentland A. Dynaman: A recursive model of human motion[R]. Cambridge, MA: MIT Media Lab, 1998.
  • 5Plaenkers R, Fua P. Articulated soft objects for video-based body modeling[A]. In: IEEE Proceedings of International Conference on Computer Vision, Vancouver, 2001. 394~401.
  • 6Deutscher J, Blake A, Reid I. Articulated body motion capture by annealed particle filtering[A]. In: IEEE Proceedings of International Conference on Computer Vision and Pattern Recognition, Hilton Head Island, 2000, 2: 126~133.
  • 7Deutscher J, Davidson A, Reid I. Articulated partitioning of high dimensional search spaces associated with articulated body motion capture[A]. In: IEEE Proceedings of International Conference on Computer Vision and Pattern Recognition. Hawaii, 2001, 2: 669~676.
  • 8Brand M. Shadow puppetry[A]. In: IEEE Proceedings of International Conference on Computer Vision, Corfu, 1999. 1237~1244.
  • 9Zhang J, Liu J S. A new sequential importance sampling method with its application to the 2D hydrophobic-hydrophilic model[J]. Journal of Chemical Physics, 2002, 117(7): 3492~3498.
  • 10Wang X, Chen R, Liu J S. Monte Carlo Bayesian signal processing for wireless communications[J]. Journal of VLSI Signal Processing. 2002, 30(2): 89~105.?A?A?A

共引文献328

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部